تأثیر قارچ Claroideoglomus etunicatum بر رشد و جذب عناصر غذایی ذرت تحت تنش ترکیبی بور و شوری

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری بخش علوم خاک، دانشکده کشاورزی دانشگاه شیراز

2 دانشیار بخش علوم خاک، دانشکده کشاورزی دانشگاه شیراز و گروه کشاورزی و منابع طبیعی، مرکز آموزش عالی اقلید

چکیده

تنش شوری و بور در خاک­های مناطق خشک و نیمه خشک جهان رشد گیاه را محدود می­کند. این پژوهش با هدف بررسی اثر قارچ بر عملکرد و میزان جذب عناصر غذایی ذرت تحت تنش شوری و سمیت بور انجام گردید. آزمایش به صورت فاکتوریل در قالب طرح کاملاً تصادفی و با سه تکرار انجام شد. تیمار­ها شامل دو سطح شوری شاهد (بدون افزایش شوری) و 8 دسی زیمنس بر متر و بور شامل دو سطح شاهد و 30 میلی­گرم بور در کیلوگرم خاک از منبع اسیدبوریک و سدیم کلرید و دو سطح قارچی (با حضور و بدون قارچ Claroideoglomus etunicatum) بود. نتایج نشان داد که تنش شوری و سمیت بور تأثیر معنی­داری بر درصد کلونیزاسیون ریشه نداشت (سطح احتمال 5%). با افزایش بور خاک، مایه­زنی قارچ میزان کلروفیل، جذب بور اندام هوایی، جذب پتاسیم و فسفر را به ترتیب 7/09%، 15/83%، 31/62% و 51/57% در سطح احتمال 5% به‌طور معنی­دار افزایش داد، درحالی‌که جذب بور ریشه، جذب آهن، مس و منگنز را به ترتیب 35/15%، 28/72%، 39/62% و 42/12% در سطح احتمال 5% به­طور معنی­دار کاهش داد. همچنین با ­افزایش شوری خاک و مایه­زنی قارچ، میزان کلروفیل، جذب مس، منگنز به ترتیب 5/05%، 35/38% و 25/97% به­طور معنی­دار افزایش و جذب سدیم 40/31% به­طور معنی­دار کاهش یافت (سطح احتمال 5%). در تنش ترکیبی شوری و بور، مایه­زنی قارچ توانست کلروفیل برگ، جذب بور ریشه، پتاسیم، فسفر و آهن را به ترتیب 8/42%، 61/56%، 68/55%، 82/01% و 23/63% به­طور معنی­دار افزایش و جذب سدیم، روی، مس و بور اندام هوایی را به ترتیب 20/98%، 40/07%، 72/54% و34/38% به­طور معنی‌دار کاهش دهد (سطح احتمال 5%). نتایج این تحقیق نشان می­دهد که مایه­زنی قارچ می­تواند به بهبود رشد و جذب عناصر غذایی در شرایط سمیت بور و تنش شوری خاک کمک کند.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Effect of Claroideoglomus etunicatum Fungus on the Growth and Nutrient Absorption of Maize plant under the combined stress of boron and salinity

نویسندگان [English]

  • narges abdar 1
  • mehdi zarei 2
1 Soil Science Department, college of Agriculture, Shiraz University, Fars
2 Associate Professor, Department of Soil Science, College of Agriculture, Shiraz University, Shiraz, Iran and Department of Agriculture and Natural Resources, Higher Education Center of Eghlid
چکیده [English]

Salt stress and boron toxicity in the soils of arid and semi-arid regions of the world limit plant growth. A factorial experiment in a completely randomized design with three replications was used to investigate the effect of arbuscular mycorrhizal fungus on the growth and nutrient uptake of maize under salinity stress and boron toxicity. Two levels of boron (control and 30 mg B kg-1), two salinity levels (control and 8 dS m-1) from the source of boric acid and sodium chloride and two fungal levels (without inoculation, inoculation with Claroideoglomus etunicatum fungus) were considered. The results showed that salinity stress and boron toxicity had no effect on root colonization percentage (P>0.05). At the level of 30 mg B kg-1 boron, the fungus significantly increased the chlorophyll index, shoot boron, potassium, and phosphorus uptake (7.09%, 15.83%, 31.62%, and 51.57% respectively) and significantly decreased root boron, iron, copper and manganese uptake, (35.15%, 28.72%, 39.62% and 42.12% respectively). At the level of 8 dSm-1, the fungus significantly increased the amount of chlorophyll, copper, and manganese uptake, (5.05%, 35.38%, 25.97% respectively) and significantly decreased sodium uptake (40.31%). Under combined stress conditions and in the presence of fungus, chlorophyll index, root boron, potassium, phosphorus, and iron uptake, (8.42%, 61.56%, 82.01%, and 23.63% respectively) were significantly  increased but shoot sodium, zinc, copper, and boron absorption, (20.98%, 40.07% 72.54% and 34.38% respectively) were significantly decreased. The results of this research indicated that inoculation of fungus could help to improve the growth and absorption of nutrients in conditions of boron toxicity and soil salinity stress.

کلیدواژه‌ها [English]

  • Arbuscular mycorrhizal fungus
  • Boron toxicity
  • Maize
  • Soil salinity
  1. برین، م,، رسولی صدقیانی، م,، اشرفی سعیدلو، س.، و شکوری، ف. (1396). تأثیر شوری و تلقیح میکروبی بر عملکرد و شاخص‌های کارآیی فسفر در گیاه ذرت.تحقیقات کاربردی خاک,7(1), 148-165.‎
  2. حسنی, قاسم, مجیدی, عزیز, فرخزاد, و سپهر. (1399). اثر برهمکنش بور× پایه بر ویژگی‌های رشدی، فیزیولوژیکی و بیوشیمیائی سیب رقم گلدن دلیشز. نهال و بذر, 37(1), 23-39.‎
  3. حسینی، س م,، مفتون، م, کریمیان، ن,، رونقی، ع,، و امام، ی. (1383). تاثیر سولفات روی بر مقاومت به سمیت بور در ذرت. مجله علوم خاک و آب، 2(18): 125-135.
  4. عمو آقایی، ر.، و نیک اندیش، ف. (1394). اثر مایه­زنی دو رقم یونجه با جدایه­هایی از گونه­های سینوریزوبیوم و باسیلوس بر رشد، مقدار کلروفیل و تمامیت غشای سلول در شرایط تنش شوری. مجله پژوهش­های گیاهی (مجله زیست شناسی ایران)، 1: 140-152.
  5. Ali, F., Ali, A., Gul, H., Sharif, M., Sadiq, A., Ahmed, A., & Kalhoro, S. A. (2015). Effect of boron soil application on nutrients efficiency in tobacco leaf. American Journal of Plant Sciences, 6(09), 1391.
  6. Aref, F. (2012). Manganese, iron and copper contents in leaves of maize plants (Zea mays L.) grown with different boron and zinc micronutrients. African Journal of Biotechnology, 11(4), 896-903.
  7. Banuelos, G. S., Wu, L., Akohoue, S., Zambrzuski, S., & Mead, R. (2010). Trace element composition of different plant species used for remediation of boron-laden soils. In Plant Nutrition—from Genetic Engineering to Field Practice (pp. 425-428). Springer, Dordrecht: New York.
  8. Barua, D., Mishra, A., Kirti, P. B., & Barah, P. (2022). Identifying signal-crosstalk mechanism in maize plants during combined salinity and boron stress using integrative systems biology approaches. BioMed Research International, 2022.
  9. Bastías, E. I., González-Moro, M. B., & González-Murua, C. (2004). Zea mays L. amylacea from the Lluta Valley (Arica-Chile) tolerates salinity stress when high levels of boron are available. Plant and Soil, 267, 73-84.
  10. Ben-Gal, A., & Shani, U. (2002). Yield, transpiration and growth of tomatoes under combined excess boron and salinity stress. Plant and soil, 247(2), 211-221.
  11. Berger, K. C., & Truog, E. (1939). Boron determination in soils and plants. Industrial and Engineering Chemistry Analytical Edition, 11(10), 540-545.
  12. Bouyoucos, G. J. (1962). A recalibration of the hydrometer method for making mechanical analysis of soils 1. Agronomy Journal, 43(9), 434-438.
  13. Bremner, J. M. (1996). Nitrogen-total. Methods of Soil Analysis Part 3—Chemical Methods, (methodsofsoilan3), 1085-1121.
  14. Cabral, L., Soares, C. R. F. S., Giachini, A. J., & Siqueira, J. O. (2015). Arbuscular mycorrhizal fungi in phytoremediation of contaminated areas by trace elements: mechanisms and major benefits of their applications. World Journal of Microbiology and Biotechnology, 31, 1655-1664.
  15. Capula-Rodríguez, R., Valdez-Aguilar, L. A., Cartmill, D. L., Cartmill, A. D., & Alia-Tejacal, I. (2016). Supplementary calcium and potassium improve the response of tomato (Solanum lycopersicum L.) to simultaneous alkalinity, salinity, and boron stress. Communications in Soil Science and Plant Analysis, 47(4), 505-511.
  16. Chandrasekaran, S., Sato, N., Tölle, F., Mülhaupt, R., Fiedler, B., & Schulte, K. (2014). Fracture toughness and failure mechanism of graphene based epoxy composites. Composites Science and Technology, 97, 90-99.
  17. El-Agrodi, M., EL-Shebiny, G., Mosa, A., & El-sherpiny, M. (2016). Maize tolerance to different levels of boron and salinity in irrigation water. Journal of Soil Sciences and Agricultural Engineering, 7(1), 35-44.
  18. Eraslan, F., Inal, A., Gunes, A., & Alpaslan, M. (2007). Boron toxicity alters nitrate reductase activity, proline accumulation, membrane permeability, and mineral constituents of tomato and pepper plants. Journal of Plant Nutrition, 30(6), 981-994.
  19. García-Sánchez, F., Simón-Grao, S., Martínez-Nicolás, J. J., Alfosea-Simón, M., Liu, C., Chatzissavvidis, C., & Cámara-Zapata, J. M. (2020). Multiple stresses occurring with boron toxicity and deficiency in plants. Journal of hazardous Materials, 397, 122713.
  20. Ghanbarzadeh, Z., Zamani, H., Mohsenzadeh, S., Marczak, Ł., Stobiecki, M., & Zarei, M. (2021). Rhizosphere symbionts improve water stress tolerance in Moldavian balm through modulation of osmolytes. Rhizosphere, 19, 100367.
  21. Giovannetti, M., & Mosse, B. (1980). An evaluation of techniques for measuring vesicular arbuscular mycorrhizal infection in roots. New Phytologist, 489-500.
  22. Giri, C., Pengra, B., Zhu, Z., Singh, A., & Tieszen, L. L. (2007). Monitoring mangrove forest dynamics of the Sundarbans in Bangladesh and India using multi-temporal satellite data from 1973 to 2000. Estuarine, coastal and shelf science, 73(1-2), 91-100.
  23. Hegazi, A. M., El-Shraiy, A. M., & Ghoname, A. A. (2017). Mitigation of salt stress negative effects on sweet pepper using arbuscular mycorrhizal fungi (AMF), Bacillus megaterium and brassinosteroids (BRs). Gesunde Pflanzen, 69(2), 91-102.
  24. Hosseini, A., & Gharaghani, A. (2015). Effects of arbuscular mycorrhizal fungi on growth and nutrient uptake of apple rootstocks in calcareous soil. International Journal of Horticultural Science and Technology, 2(2), 173-185.
  25. Hu, Y., Liu, X., Bai, J., Shih, K., Zeng, E. Y., & Cheng, H. (2013). Assessing heavy metal pollution in the surface soils of a region that had undergone three decades of intense industrialization and urbanization. Environmental Science and Pollution Research, 20(9), 6150-6159.
  26. Ismail, A.M. (2004). Response of Maize and Sorghum to Excess Boron and Salinity. Plant Biology., 47: 313-316.
  27. Jabeen, N., & Ahmad, R. (2011). Effect of foliar-applied boron and manganese on growth and biochemical activities in sunflower under saline conditions. Pakistan Journal of Botany, 43(2), 1271-1282.
  28. Jadallah, S. O., & ALsaadi, A. H. (2021). Evaluation of Some Mycorrhizae Strains on Improving Nutrients Absorption in Maize Plant Grown in (Sirte–Libya) Saline Soil. Mediterranean Journal of Basic and Applied Sciences (MJBAS).
  29. Jones, J. B., Jr. (1991). Plant tissue analysis in micronutrients. P. 477-521. In J. J. Mortvelt et al. (eds). Micronutrient in agriculture. 2 nd. SSSA Book Sea. 4.SSSA. Madison, WI.
  30. Khan, A., Zhao, X. Q., Javed, M. T., Khan, K. S., Bano, A., Shen, R. F., & Masood, S. (2016). Bacillus pumilus enhances tolerance in rice (Oryza sativa L.) to combined stresses of NaCl and high boron due to limited uptake of Na+. Environmental and experimental botany, 124, 120-129.
  31. Knudsen, E. I. (1982). Auditory and visual maps of space in the optic tectum of the owl. Journal of Neuroscience, 2(9), 1177-1194.
  32. Kormanik, P. P., & McGraw, A. C. (1982). Qualification of vesicular arbuscular mycorrhizae in plant root. In: Mathod and principles of mycorrhizal research, Scheneck, N. C. (Ed). American Phytopathol SocietyS Saint Paul. 37-45.
  33. Kumar, A., Sharma, S. K., Lata, C., Sheokand, S., & Kulshreshta, N. (2015). Combined effect of boron and salt on polypeptide resolutions in wheat (Triticum aestivum) varieties differing in their tolerance. Indian Journal of Agricultural Sciences,, 85, 1626-1632.
  34. Latef, A. A. H., & Miransari, M. (2014). The role of arbuscular mycorrhizal fungi in alleviation of salt stress. Use of Microbes for the Alleviation of Soil Stresses: Volume 2: Alleviation of Soil Stress by PGPR and Mycorrhizal Fungi, 23-38.
  35. Li, H., Luo, N., Zhang, L. J., Zhao, H. M., Li, Y. W., Cai, Q. Y., & Mo, C. H. (2016). Do arbuscular mycorrhizal fungi affect cadmium uptake kinetics, subcellular distribution and chemical forms in rice?. Science of the Total Environment, 571, 1183-1190.
  36. Lindsay, W. L., & Norvell, W. A. (1978). Development of a DTPA soil test for zinc, iron, manganese, and copper 1. Soil Science Society of America Journal, 42(3), 421-428.
  37. Liu Ch., Dai Zh, Xia J., Chang C., & Sun H. (2018). Combined effect of salt and drought on boron toxicity in Puccinellia tenuiflora. Ecotoxicology and Environmental Safety, 157:395–402.
  38. Liu, Y., Mi, G., Chen, F., Zhang, J., & Zhang, F. (2004). Rhizosphere effect and root growth of two maize (Zea mays L.) genotypes with contrasting P efficiency at low P availability. Plant science, 167(2), 217-223.
  39. Ma, J., Wang, W., Yang, J., Qin, S., Yang, Y., Sun, C., & Huang, J. (2022). Mycorrhizal symbiosis promotes the nutrient content accumulation and affects the root exudates in maize. BMC Plant Biology, 22(1), 64.
  40. Mohamed, A. K. S. H., Qayyum, M. F., Shahzad, A. N., Gul, M., & Wakeel, A. (2016). Interactive effect of boron and salinity on growth, physiological and biochemical attributes of wheat (Triticum aestivum). International Journal of Agriculture And Biology, 18(2), 238-244.
  41. Moraga, N. B., Amoroso, M. J., & Rajal, V. B. (2014). Strategies to ameliorate soils contaminated with boron compounds. In Bioremediation in Latin America (pp. 41-51). Springer, Cham.
  42. Nable, R. O., Bañuelos, G. S., & Paull, J. G. (1997). Boron toxicity. Plant and Soil, 193(1-2), 181-198.
  43. Navarro, J. M., Pérez-Tornero, O., & Morte, A. (2014). Alleviation of salt stress in citrus seedlings inoculated with arbuscular mycorrhizal fungi depends on the rootstock salt tolerance. Journal of Plant Physiology, 171(1), 76-85.
  44. Nelson, D. W., Sommers, L. E., Sparks, D., Page, A., Helmke, P., Loeppert, R., & Sumner, M. (1996). Total carbon, organic carbon, and organic matter. Methods of Soil Analysis. Part 3-Chemical and microbiological properties. Soil Science of America and American Society of Agronomy. Madison, Wisconsin 961-1010.
  45. Olsen, S. R., Sommers, L. E. (1982). Phosphorus. P. 403-424. In A. L. Page (ed.) Methods of soil analysis, Part 2. Soil Science Society of America Journal., Madison, WI.
  46. Pandey, A., Khan, M. K., Hakki, E. E., Gezgin, S., & Hamurcu, M. (2019). Combined boron toxicity and salinity stress—An insight into its interaction in plants. Plants, 8(10), 364.
  47. Rhoades, J., Sparks, D., Page, A., Helmke, P., Loeppert, R., Soltanpour, P., & Summer, M. (1996). Salinity: Electrical Methods of Soil Analysis Part 3-Chemical Methods conductivity and total dissolved solids., 417-435.
  48. Samet, H., Cikili, Y., & Dursun, S. (2015). The role of potassium in alleviating boron toxicity and combined effects on nutrient contents in pepper (Capsicum annuum L.). Bulgarian Journal of Agricultural Science, 21(1), 64-70.
  49. Shao, Y. D., Zhang, D. J., Hu, X. C., Wu, Q. S., Jiang, C. J., Xia, T. J., & Kuča, K. (2018). Mycorrhiza-induced changes in root growth and nutrient absorption of tea plants. Plant, Soil and Environment, 64(6), 283-289.
  50. , Khan, A., Ali, L., Chaudhary, H. J., Munis, M. F. H., Bano, A., & Masood, S. (2016). Bacillus pumilus alleviates boron toxicity in tomato (Lycopersicum esculentum L.) due to enhanced antioxidant enzymatic activity. Scientia Horticulturae, 200, 178-185.
  51. Smith, T. E., Grattan, S. R., Grieve, C. M., Poss, J. A., Läuchli, A. E., & Suarez, D. L. (2013). pH dependent salinity-boron interactions impact yield, biomass, evapotranspiration and boron uptake in broccoli (Brassica oleracea L.). Plant and soil, 370, 541-554.
  52. Sonmez, O., Aydemir, S. A. L. İ. H., & Kaya, C. E. N. G. İ. Z. (2009). Mitigation effects of mycorrhiza on boron toxicity in wheat (Triticum durum) plants. New Zealand Journal of Crop and Horticultural Science, 37(2), 99-104.
  53. Thomas, G. W. (1996). Soil pH and soil acidity. Methods of Soil Analysis Part 3-Chemical Methods, (methodsofsoilan3), 457-490.
  54. Turhan, A. (2021). Interactive effects of boron stress and mycorrhizal (AMF) treatments on tomato growth, yield, leaf chlorophyll and boron accumulation, and fruit characteristics. Archives of Agronomy and Soil Science, 67(14), 1974-1985.
  55. Wimmer, M. A., & Goldbach, H. E. (2012). Boron‐and‐salt interactions in wheat are affected by boron supply. Journal of plant nutrition and soil science, 175(2), 171-179.
  56. Yermiyahu, U., Ben-Gal, A., Keren, R., & Reid, R. J. (2008). Combined effect of salinity and excess boron on plant growth and yield. Plant and Soil, 304(1), 73-87.
  57. Zarei M, König S, Hempel S, Nekouei MK, Savaghebi G, Buscot F. (2008). Community structure of arbuscular mycorrhizal fungi associated to Veronica rechingeri at the Anguran zinc and lead mining region. Environmental Pollution, 156:1277-1283.