اثرات قارچ‌های میکوریز آربسکولار و سطوح آبیاری بر عملکرد و ویژگی‌های رشد درختان لیمو (Citrus aurantifolia) در داراب

نوع مقاله : مقاله پژوهشی

نویسندگان

1 استادیار بخش تحقیقات خاک و آب، مرکز تحقیقات و آموزش کشاورزی و منابع طبیعی استان فارس، سازمان تحقیقات، آموزش و ترویج کشاورزی، داراب، فارس، ایران

2 دانشیار موسسه تحقیقات خاک و آب، سازمان تحقیقات، آموزش و ترویج کشاورزی، کرج، ایران

چکیده

لیمو بدلیل تازه خوری و استفاده در بسیاری صنایع جانبی، از جمله صنایع غذایی و نیز ارزش اقتصادی بالا، در بین مرکبات از اهمیت ویژه­ای برخوردار است. به­منظور بررسی اثرات تلقیح با قارچ میکوریز آربسکولار تحت شرایط تنش و بدون تنش بر درختان لیمو، آزمایشی بصورت اسپلیت پلات و در قالب طرح بلوک­های کامل تصادفی و در سه تکرار، طی دو سال، در داراب اجراء شد. پلات های اصلی شامل سه سطح آبیاری (60، 80 و 100درصد نیاز آبی لیمو) و پلات­های فرعی شامل استفاده از مایه تلقیح قارچ میکوریزا آربسکولار در سه سطح صفر، 1000 و 2000 گرم به ازای هر درخت لیمو بود. مایه تلقیح قارچ میکوریزا مخلوطی از سه گونه Funneliformis mosseae, Rhizophagus irregularis, Claroideoglomus etunicatum بود. نتایج نشان داد که تنش رطوبتی صرفنظر از تلقیح یا عدم تلقیح قارچ میکوریزا، سبب کاهش معنی دار اکثر صفات اندازه گیری شده بجز کارایی مصرف آب که روند معکوسی را نشان داد، گردید. استفاده از قارچ میکوریزا صرفنظر از اعمال تنش رطوبتی، اکثر صفات اندازه گیری شده را افزایش داد، بطوری­که استفاده از دو کیلوگرم قارچ میکوریز آربسکولار به ازای هر درخت سبب افزایش معنی­دار عملکرد میوه، وزن میوه، کلروفیل برگ، غلظت فسفر برگ، رطوبت نسبی برگ، کارایی مصرف آب و کلنی سازی ریشه، بترتیب به میزان 22/1، 53/3، 42/0، 19/5، 15/3، 24/0 و 508 درصد شد. استفاده از قارچ میکوریزا تحت شرایط تنش ملایم و شدید رطوبتی، سبب بهبود برخی صفات گردید. از جمله عملکرد میوه را  به­ترتیب 20/2 و 37/6 درصد بهبود بخشید. بعنوان نتیجه گیری کلی می توان اظهار نمود که استفاده از قارچ میکوریزا علاوه بر تاثیر بر عملکرد و برخی ویژگی های رشد درختان، احتمالاً سبب افزایش مقاومت به تنش رطوبتی بواسطه بهبود غلظت فسفر و روابط آبی در گیاه، نظیر تنظیم اسمزی، هدایت هیدرولیکی آب و کنترل روزنه­ای گردیده است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Effects of arbuscular mycorrhizal fungi and irrigation levels on yield and growth characteristics of lemon (Citrus aurantifolia) trees in Darab

نویسندگان [English]

  • hasan haghighatnia 1
  • Farhad Rejali 2
1 Assistant Professor of Soil and Water Research Department, Fars Agricultural and Natural Resources Research and Education Center, AREEO, Darab, Fars, Iran
2 Associate Professor of Soil and Water Research Institute, AREEO, Karaj, Iran
چکیده [English]

Lemon (Citrus aurantifolia) is particularly an important tree because its fruits are freshly used and also they are used in the food industries. Lemon tree has high economical value among all other citrus trees. In order to investigate the effects of mycorrhizal inoculation on lemon tree under draught stress, an experiment was carried out in split-block design with three replications. The study area was Darab and the experimental period was two years. The main plots consisted of three levels of irrigation (60 %, 80 % and 100 % of lemon water requirements), and the subplots were three levels of mycorrhizal inoculation (0, 1 and 2 kg per tree). Mycorrhizal inoculant was prepared by mixing of three species Funneliformis mosseae, Rhizophagus irregularis and Claroideoglomus etunicatum. The results showed that moisture stress, regardless to mycorrhizal inoculation, caused significant decrease in the majority of the measured traits, except Water use efficiency (WUE) that showed the opposite trend. Main effects of mycorrhizal inoculation increased the majority of measured traits. In 2 kg per tree inoculation treatment, fruit yield, fruit weight, leaf chlorophyll, leaf phosphorous concentration, relative water content, WUE and root colonization were significantly increased (22.1, 53.3, 42.0, 19.5, 15.3, 24.0 and 508 percent, respectively). Under the conditions of mild and sever moisture stresses, the use of mycorrhizal inoculant (1 and 2 kg per tree)  improved some of the measured traits, such as fruit yield that increased 20.2% and 37.6%, respectively. As a general conclusion, using of mycorrhizal inoculation had significant effect on yield and some growth characteristics and increased tolerance to moisture stress probably due to improve P concentration and water relation in plant, such as osmotic adjustment, water hydronic conductivity and stomatal regulation

کلیدواژه‌ها [English]

  • “Lemon (Citrus aurantifolia)”
  • “Mycorrhizal fungi”
  • “Phosphorous”
  • “Water stress”
  • “Water use efficiency”
  1. احمدی، ک.، عبادزاده، ح ر.، حاتمی، ف.، حسین پور، ر. و عبدشاه، ه. 1399. آمارنامه کشاورزی سال98. معاونت برنامه ریزی و اقتصادی، مرکز فناوری اطلاعات و ارتباطات، وزارت جهاد کشاورزی. جلد سوم. محصولات باغبانی.
  2. تدین، م س.، خوگر ز.، معافپوریان، غ ر.، ضیائیان، ع. ح.، کشاورز، ه.، نوابی، ف.، همتی، ا.، حقیقت­نیا، ح.، رستگار، ح.، میرزاوند، ج. ب. و ملکوتی، م. ج. 1384. توصیه بهینه کودی برای محصولات زراعی و باغی استان فارس. نشریه فنی شماره 456. انتشارات سنا، تهران، ایران.
  3. پوزش شیرازی، م.، حقیقت نیا، ح.، خادمی، ر. 1397. تأثیر همزیستی میکوریزی بر جذب عناصر غذایی و کارایی مصرف آب در گوجه فرنگی تحت شرایط تنش خشکی. نشریه آب و خاک، دانشگاه فردوسی مشهد 22(4): 820-809.
  4. حقیقت­نیا، ح.، رجالی، ف.، نادیان، ح. 1390. تأثیر دو گونه قارچ میکوریزا آربسکولار بر برخی پارامترهای رشد رویشی پایه مرکبات citrus volkameriana تحت تنش خشکی. دوازدهمین کنگره علوم خاک ایران، تبریز، ایران.
  5. حیدری، ن. 1393. ارزیابی شاخص بهره­وری آب کشاورزی و عملکرد سیاست ها و برنامه­های مدیریت آب کشور در این زمینه. 78 :199-177.
  6. Ahanger, M.A., Hashem, A., Abd-Allah, E.F., and Ahmad P. 2014. Arbuscular mycorrhiza in crop improvement under environmental stress, pp 69-95. In: Ahmad P. (eds) Emerging Technologies and Management of Crop Stress Tolerance, Elsevier Publication.
  7. Amiri, M.J., and Eslamian, S.S. 2010. Investigation of climate change in Iran. Journal of Environmental Science and Technology, 3(4): 208-216.
  8. Begum, N., Qin, C., Ahanger, M.A., Raza, S., Khan M.I., Ashraf, , Ahmed, N.  and  Zhang, L. 2019. Role of arbuscular mycorrhizal fungi in plant growth regulation: Implications in abiotic stress tolerance. Frontiers in Plant Science, 10:1-15.
  9. Doorenbos, J., and Pruitt, W.O. 1984. Crop water requirements, Food and Agriculture Organization of the United Nations. Irrigation and Drainage Paper No.24, Revised, Room, Italy.
  10. Fernández-Lizarazo, J.C., and Moreno-Fonseca, L.P. 2016. Mechanisms for tolerance to water-deficit stress in plants inoculated with arbuscular mycorrhizal fungi. A review. Agron. Colomb. 34: 179–189.
  11. He, J.D., Zou, Y.N., Wu, Q.S., and Kuˇca, K. 2020. Mycorrhizas enhance drought tolerance of trifoliate orange by enhancing activities and gene expression of antioxidant enzymes. Sci. Hortic. 262:108745.
  12. Ibijbijen, J., Urquiaga, S., Ismaili, M., Alves, B.J.R., and Boddey, R.M. 1996. Effect of arbuscular mycorrhizal fungi on growth, mineral nutrition and nitrogen fixation of three varieties of common beans. New Phytol. 134: 353-360.
  13. Keller, J., and Blisner, R. 1990. Sprinkler and trickle irrigation, Van Nostrand Reinbold, Newyork, 10003, 642p.
  14. Krishna, H., Singh, S.K., Sharma, R.R., Khawale, R.N., Grover, M., and Patel, V.B. 2005. Biochemical changes in micropropagated grape (Vitis vinifera) plantlets due to arbuscular-mycorrhizal fungi (AMF) inoculation during ex vitro acclimatization. Scientia Hortic. 106:554-567.
  15. Larrainzar, E., Wienkoop, S. 2017. A proteomic view on the role of legume symbiotic interactions. Frontiers in Plant Science, 8:1-13.
  16. Murphy, J., and Riley, J.P. 1962. A modified single solution method for the determination of phosphate in natural waters. Analytica Chimica Acta. 27:31-36.
  17. Orfanou, A., Pavlou, D., Porter, W.M. 2019. Maize yield and irrigation applied in conservation and conventional tillage at various plant densities. Water, 11: 1726-1748.
  18. Pirzad, A.R, Mohammadzadeh, S. 2018. Water use efficiency of three mycorrhizal Lamiaceae species (Lavandula officinalis, Rosmarinus Officinalis and Thymus vulgaris). Agriculture Water Management, 204:1-10.
  19. Phillips, J.M., and Hayman, D.S. 1970. Improved procedures clearing roots and staining parasitic and vesicular mycorrhizal fungi for rapid assessment of infection. Trans. Br. Mycol. Soc. 55: 158-161.
  20. Sembok, W.W., Abu-Kassim, N., Hamzah, Y., and Rahman, ZA. 2015. Effect of Mycorrhizal Inoculation on Growth and Quality of Roselle (Hibiscus sabdariffa) Grown in Soiless Culture System. Malaysian Appl. Biol. 44(1): 57-62.
  21. Sonar, B.A., Kamble, V.R., and Chavan, P.D. 2013. Native AM fungal colonization in three Hibiscus species under NaCl induced salinity. J. Pharm. Biol. Sci. 5(6): 7-13.
  22. Subramanian, K.S., Santhanakrishnan, P., and Blasubramanian, P. 2006. Responses of field grown tomato plants to arbuscular mycorrhyzal fungal colonization under varying intensities of drought stress. Scientia Horticulturae, 107:245-253.
  23. Tauschke, M., Behrendt, A., Monk, J., Lentzsch, P., Eulenstein, F., and Monk, S. 2015. Improving the water use efficiency of crop plants by application of mycorrhizal funji. Horticulturae, 1-8.
  24. Wu, Q.S., Srivastava, A.K.  and  Zou, Y.N.  AMF-induced tolerance to drought stress in citrus: a review. Sci. Horti. 164: 77-87.
  25. Wu, Q.S., He, J.D., Srivastava, A.K., Zou, Y.N., and Kuˇca, K. 2019. Mycorrhizas enhance drought tolerance of citrus by altering root fatty acid compositions and their saturation levels. Tree Physiol. 39: 1149–1158.
  26. Wu, Q.S., and Xia, R.X. 2006a. Arbuscular mycorrhizal fungi influence growth, osmotic adjustment and photosynthesis of citrus under well-watered and water stress conditions. J. Plant Physiol. 163(4):417-425.
  27. Wu, Q.S., and Xia, R.X. 2006b. Effects of water stress and Arbuscular mycorrhizal fungi on reactive oxygen metabolism and antioxidant production by citrus ( Citrus tanjerin) roots. Europ. J. Soil Biol. 42(3):166-172.
  28. Wu, Q.S., and Zou, Y.N. 2009a. The effect of Dual application of arbuscular mycorrhizal fungi and polyamines upon growth and nutrient uptake on trifoliate orange (Poncirus trifoliate) seedlings. Not. Bot. Hort. Agrobot. Cluj. 37(2):95-98.
  29. Wu, Q.S., and Zou, Y.N. 2009b. Mycorrhiza has a direct effect on reactive oxygen metabolism of drought-stressed citrus. Plant Soil Environ. 55(10):436-442.
  30. Wu, Q.S., Zou, Y.N., Xia, R.X., and Wang, M.Y. 2007. Five Glomus species affect water relations of citrus tanjerine during drought stress. Botanical Studies, 48:147-154.
  31. Zarei, M., Paymaneh, Z., Ronaghi, A. 2016. The effects of arbuscular mycorrhizal fungus and water stress on some antioxidant enzymes activities and nutrients uptake of two citrus rootstocks. Iran Agricultural Research, 35(2): 19-26.
  32. Zhang, F., Zou, Y.N., Wu, Q.S., and Kuˇca, K. 2020. Arbuscular mycorrhizas modulate root polyamine metabolism to enhance drought tolerance of trifoliate orange. Environ. Exp. Bot. 171:103962.
  33. Zou, Y.N., Wu, Q.S., and Kuˇca, K. 2020. Unravelling the role of arbuscular mycorrhizal fungi in mitigating the oxidative burst of plants under drought stress. Plant Biol. doi: 10.1111/plb.13161. [Epub ahead of print].