Effect of wildfire on organic carbon fractions in the pasture soils of Alvand hillslope

Document Type : Research Paper

Authors

1 Professor, Soil Science Department, Bu Ali Sina University

2 DM. Sc. Graduated, Bu Ali Sina University

3 Assistant Professor, Soil Science Department, Bu Ali Sina University

4 Associate Professor, Soil Science Department, Bu Ali Sina University

Abstract

The aim of this study was to recognize the transformation of soil organic matter fractions in burned and unburned pasture lands. The study area was a pasture land located in Alvand hillslope (toposequence), near the village of Haidara, Hamadan. The low-intensity wildfire occurred in the hillslope in autumn (October) 2015, in such a way that half the toposequence was burned up to the bottom symmetrically. Soil samples were gathered from three locations (up, mid, and down) of burned and unburned parts of toposequence 2 (December, 2015-autumn) and 9 months (June, 2016-spring) after wildfire occurrence. In each location, soil sampling was carried out in two parts; between the bushes and under their canopies and in two depths; 0-5 (upper) and 5-10 cm (lower) layers, respectively. Litter samples were also gathered in a 30*30 cm2 plot for each burnt and unburnt parts of toposequence. All sampling was carried out in three replications. The light fraction of organic matter (LF), cold and hot water extractable organic carbons (CWEOC and HWEOC), biomass carbon (BC), total organic carbon (TOC), and basal respiration (BR) were measured. The data analyzed in split-split plot design for each layer (upper and lower) and each season (autumn and spring) of sampling separately. In the mentioned statistical design, sampling location on toposequence (up, mid, and down) was regarded as the main plot, fire impacted area (burnt and unburnt) as a subplot, and sampling location related to bushes (between and under canopy) as sub-sub plot. Soil OC and BR were higher in the upper layer and under the bush's canopy rather than the lower layer and between bushes. In general wildfire increased TOC (42%), LF (41%), and BC (52%) in the sampled soils. In contrast, CWEOC, HWEOC, and BR in burnt soils were 61, 52, and 48% lower compared to those in unburnt soils, respectively. Although in autumn the litter content was lower on burnt soils compared to those in unburnt soils (50%), in spring it significantly increased on burnt soils. The increases in litter on burnt and unburnt soils were 4.5 and 2 times, respectively. The study showed that wildfire and burning of plant cover by producing biochar on the pastures can improve carbon sequestration in soil.

Keywords


  1. ابراهیمی محمدی، ش.،م. آذری و ا. منوچهری. 1394. اثرات آتش‌سوزی  بر خصوصیات خاک، فرسایش و رژیم هیدرولوژی حوضه آبخیز دریاچه زریبار. نشریه آب و خاک (علوم و صنایع کشاورزی) 30(2): 631-618.
  2. ایزدی‌کیان، ل.، م. محجلو س.ا. علوی. 1393. مراحل دگرریختی در سنگ‌های دگرگونی منطقه همدان و ارتباط آنها با توده نفوذی الوند. علوم زمین 92: 187-198.
  3. جگروند، ب. 1392. تأثیر کوتاه مدت آتش‌سوزی  بر فرانسجه‌های کیفیت خاک مراتع نیمه استپی نهاوند. پایان نامه کارشناسی ارشد. دانشگاه بوعلی سینا. دانشکده کشاورزی. 126 صفحه.
  4. داودی، م.، م.ع. حاج عباسی، م.ر. مصدقی و م. ایروانی. 1395. آثار باقیمانده آتش‌سوزی بر برخی ویژگی­های شیمیایی خاک در یک مرتع در زاگرس مرکزی. نشریه پژوهش­های خاک (علوم خاک و آب) 30(2): 227-236.
  5. سپاهی­گروه، ع.ا.، ن. اسدی و ص. سلامی. مطالعه پتروژنز، شیمی کانیها و دما- فشارسنجی سنگهای دگرگونی مجاورتی حاشیه توده الوند، همدان. پتـــرولوژی 19: 67-86.
  6. صفری سنجانی، ع.ا.1394. مواد آلی خاک. چاپ نخست. انتشارات دانشگاه بوعلی سینا. 364 صفحه.
  7. صفری سنجانی، ع.ا. و م.افضل پور. 1393. پیامد کاربرد کودهای آلی گیاهی بر بخش‌های شیمیایی و زیستی کربن آلی خاک. مدیریت خاک و تولید پایدار 4(3): 33-60.
  8. صفری سنجانی، ع.ا.،ز. شریفی و م.صفری سنجانی.1389. روش­های آزمایشگاهی در میکروبیولوژی. انتشارات دانشگاه بوعلی سینا. 525 صفحه.
  9. صفری سنجانی، ع.ا. و س. طاهری قهریزجانی. 1396.بخشبندی فیزیکی کربن آلی در خاک­های شنی و رسی تیمار شده با کود جانوری و زئولیت. مهندسی زراعی40 (1):  37-56.
  10. طالع­فاضل؛ ا.، م. یوسفی. 1397. زمین­شناسی عمومی و معرفی جاذبه های گردشگری دامنه­های شمالی کوهستان الوند، استان همدان. یافته­های نوین زمین شناسی کاربردی 12(23): 21-37.
  11. غلامی، پ.، ج. قربانی و ح.عباسی. 1393. تأثیر آتش‌سوزی  پوشش گیاهی بر برخی از ویژگی‌های خاک در مراتع پارک ملی بمو شیراز. فصلنامه اکوسیستم­های طبیعی ایران 5(2):41-50.
  12. فتحی گردلیدانی، ا. و ب. رحیم­زاده. 1395. نقش جزء رس در نگهداشت کربن آلی محلول در خاک. نشریه دانش آب و خاک26(2/4): 273- 285.
  13. محمودی، ع.، و ح. بوستانی. 1396. بررسی تأثیر آتش­سوزی بر فراهمی برخی عناصر غذایی و خصوصیات شیمیایی خاک مرتعی مطالعه موردی: مراتع مروارید، منطقه داراب. مجله مهندسی اکوسیستم بیابان 16: 35-48.
  14. نقی­پور برج، ع.ا. وس. فرخ­نیا. 1396. اثر آتش‌سوزی  بر ترسیب کربن خاک و زیتوده گیاهی در مراتع نیمه استپی زاگرس مرکزی. نشریه حفاظت زیست بوم گیاهان 5(10):39-51.
  15. Amitava, R., P.C. Abhilash, H.B. Singh and S. Ghosh. 2017. Adaptive Soil Management: From Theory to Practices. Springer Nature. Singapore Pte Ltd . DOI 10.1007/978-981-10-3638-5
  16. Anderson, J.P.E. andK.H. Domsch, 1978. A physiological method for the quantitative measurement of microbial biomass in soils. Soil Biology and Biochemistry 10: 215–221.
  17. Badia, D. and C. Marti. 2003. Plant ash and heat intensity effects on chemical and physical properties of two contrasting soils. Arid Land Research and Management 17:23-41.
  18. Basanta, M.R., M. Díaz-Raviña and S.J. González-Prieto. 2002. Biochemical properties of forest soils as affected by a fire retardant. Biology and Fertility of Soils 5:377-383.
  19. Certini, G. 2005. Effects of fire on properties of forest soils: a review. Oecologia 143: 1-10.
  20. Compton, J.E, and R.D. Boone. 2000. Long-term impacts of agriculture on soil carbon and nitrogen in New England forests. Ecology 81(8): 2314-2330.
  21. Dai, X., T.W. Boutton, B. Glaser, R.J. Ansley and W. Zech. 2005. Black carbon in a temperate mixed-grass savanna. Soil Biology and Biochemistry 37: 1879-1881.
  22. DeBano, L.F. 2000. The role of fire and soil heating on water repellency in wildland environments: a revie. Journal of Hydrology 231–232: 195–200.
  23. Díaz-Raviña, M., A. Prieto, M.J. Acea and T. Carballas. 1992. Fumigation–extraction method to estimate microbial biomass in heated soils. Soil Biology and Biochemistry 24: 259-264.
  24. Fernández, I,A., C. Cabaneiro and T. Carballas. 1997. Organic matter changes immediately after a wildfire in an Atlantic forest soil and comparison with laboratory soil heating. Soil Biology and Biochemistry 29(I): 1-11.
  25. Garcia-Corona, R., E. Benito, E. de Blas and M.E. Varela. 2004. Effects of heating on some soil physical properties related to its hydrological behavior in two northwestern Spanish soils. Intnational Journal of Wildland Fire 13: 195-199.
  26. González-Pérez, J.A., F.J. González-Vila, G. Almendros and H. Knicker. 2004. The effect of fire on soil organic matter – a review. Environment International 30: 855-870.
  27. Gregorich, E.G., M.H. Beare, U. Stoklas andP. St-Georges. 2003. Biodegradibility of soluble organic matter in maize-cropped soils. Geoderma 113: 237-252.
  28. Guerrero, C., J. Mataix-Solera, I. Gómez, F. García-Orenes and M.M. Jordán. 2005. Microbial recolonization and chemical changes in a soil heated at different temperatures. Intnational Journal of Wildland Fire 14: 385-400.
  29. Kölbl, A. and I. Kögel-Knabner. 2004. Content and composition of free and occluded particulate organic matter in a differently textured arable Cambisol as revealed by solid-state 13C NMR spectroscopy. Journal of Plant Nutrition and Soil Science 167: 45–53.
  30. Kuhlbusch, T.A.J. 1998. Black carbon in soils, sediments, and ice cores. In R.A. Meyers [eds.]. Encyclopedia of Environmental Analysis and Remediation. Wiley, New York, New York, USA.
  31. Mabuhay, J.A., N. Nakagoshi and Y. Isagi. 2006a. Soil microbial biomass, abundance, and diversity in a Japanese red pine forest: first year after fire. Journal of ForestResearch 11: 165-173.
  32. Mabuhay, J.A., Y. Isagi and N. Nakagoshi. 2006b. Wildfire effects on microbial biomass and diversity in pine forest at three topographic positions. Ecology Research 21: 54-63.
  33. Monleon, V.J., K. Cromack Jr. and J.D. Landsberg. 1997. Short and long-term effects of prescribed underburning on nitrogen availability in ponderosa pine stands in central Oregon. Canadian Journal of Forest Research 27: 369-378.
  34. Nelson, D. W., andL.E. Somers. 1996. Total carbon, organic carbon and organic matter of soil analysis. Part 3. Chemical Methods. PP. 961-1010. Madision, Wisconsin. USA.
  35. Prieto-Fernández, A., M.J. Acea and T. Carballas. 1998. Soil microbial and extractable C and N after wildfire. Biology and Fertility of Soils 27: 132-142.
  36. Soto, B. and F. Diaz-Fierros. 1993. Interactions between plant ash leachates and soil. InternationalJournal of Wildland Fire 3(4): 207-216.
  37. Strickland, C., and P. Sollins. 1987. Improved method for separating light and heavy fraction organic material from soil. Soil Science Society Amrican Journal 51: 1391-1392.
  38. Walkley, A., and I.A. Black. 1934. An examination of the digestion method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil Science 37:29-38.