تأثیر کودهای زیستی بر بهبود رشد و عملکرد نخود (Cicer arientinum L.) با روش‌های مختلف کنترل علف‌های هرز

نوع مقاله: مقاله پژوهشی

نویسندگان

1 عضو هیأت علمی گروه اگروتکنولوژی دانشکده کشاورزی و پژوهشکده علوم گیاهی دانشگاه فردوسی مشهد

2 عضو هیأت علمی پژوهشکده علوم گیاهی دانشگاه فردوسی مشهد

3 دانشجوی دکتری دانشکده کشاورزی، دانشگاه فردوسی مشهد

10.22092/sbj.2019.122083.136

چکیده

بهبود عملکرد نخود با کود‌های‌زیستی و کنترل علف‌های‌هرز، علاوه بر کاهش خلأ عملکرد می‌تواند در تولید پایدار این محصول مؤثر باشد. در این راستا آزمایشی به‌صورت فاکتوریل در قالب طرح بلوک کامل تصادفی در سه تکرار اجرا شد. فاکتورهای آزمایشی مورد بررسی شامل کاربرد کودهای‌زیستی در شش سطح (باکتری‌های حل‌کننده فسفات (Bacillus sp؛ وPseudomonas sp.)، باکتری‌های حل‌کننده پتاسیم (Thiobacillus sp.) و قارچ اندوفیت شبه‌میکوریزا (Piriformospora indica)، ترکیب باکتری‌های حل‌کننده فسفات و پتاسیم، ترکیب باکتری‌های حل‌کننده فسفات، پتاسیم و قارچ اندوفیت میکوریزا و شاهد) و کنترل علف‌های‌هرز در سه سطح (کنترل علف‌های‌هرز با مخلوط علف‌کش‌های پیردیت و کلتودیم، دو و سه بار وجین) بودند. بر اساس نتایج آزمایش فاصله اولین ساقه فرعی از سطح خاک تحت تأثیر  متقابل کودهای‌زیستی و کنترل علف‌های‌هرز قرار نگرفت؛ اما فاصله اولین غلاف از سطح خاک با کاربرد کودهای‌زیستی افزایش و در تیمار باکتری حل‌کننده فسفات و دو بار وجین علف‌های هرز بیشترین فاصله از سطح خاک مشاهده شد. بیشترین تعداد ساقه ‌اصلی در بوته در تیمار کود زیستی حل‌کننده فسفات و دو بار وجین علف‌های‌هرز و بیشترین تعداد  ساقه ‌فرعی در بوته در تیمار باکتری حل‌کننده پتاسیم همراه با باکتری حل‌کننده فسفات و کنترل علف‌های‌هرز با استفاده از مخلوط علف‌کش‌های پیردیت و کلتودیم به‌دست آمد. مصرف هم‌زمان باکتری‌های حل‌کننده پتاسیم همراه با باکتری‌های حل‌کننده فسفات موجب افزایش 30 درصدی تعداد غلاف در بوته نسبت به تیمار عدم‌مصرف کودهای زیستی گردید. بین تیمارهای کنترل علف‌های‌هرز ازنظر تعداد غلاف در بوته تفاوت معنی‌داری مشاهده نشد. کاربرد هم‌زمان باکتری‌های حل‌کننده پتاسیم و فسفات و تیمار کاربرد هم‌زمان باکتری‌های حل‌کننده پتاسیم و فسفات به همراه قارچ اندوفیت میکوریزا موجب تولید بیشترین عملکرد زیست‌توده و عملکرد دانه گردید. کاربرد مخلوط علف‌کش‌های پیردیت و کلتودیم در مقایسه با دو و سه بار وجین‌دستی علف‌های‌هرز به ترتیب موجب کاهش 29 و 24 درصدی عملکرد دانه گردید. بیشترین میزان غلظت فسفر در اندام های هوایی در تیمار استفاده از قارچ اندوفیت میکوریزا و کنترل شیمیایی علف‌های هرز و بیشترین غلظت پتاسیم در تیمار استفاده توأم باکتری‌های حل‌کننده پتاسیم و فسفات به‌همراه قارچ اندوفیت میکوریزا به‌دست آمد. به‌طورکلی کودهای زیستی تأثیر مثبتی بر عملکرد و اجزای عملکرد نخود داشتند اما کاربرد مخلوط علف‌کش‌های پیردیت و کلتودیم، تأثیر منفی بر عملکرد دانه نخود گذاشت.

کلیدواژه‌ها


عنوان مقاله [English]

Effect of biological fertilizers and different weed control methods on improvement of growth and yield of chickpea (Cicer arientinum L.)

نویسندگان [English]

  • Ebrahim Izadi-Darbandi 1
  • Jafar Nabati 2
  • Ahmad Nezami 1
  • Armin Oskoueian 3
1 Member of Faculty of Agriculture, Department of Agrotechnology and Research Center for Plant Science- Ferdowsi University of Mashhad
2 Member of Research Center for Plant Science- Ferdowsi University of Mashhad
3 Ph.D. Student of Faculty of Agriculture, Ferdowsi University of Mashhad
چکیده [English]

Using biofertilizers and weed control can be effective on improving of chickpea yield. In this study, a factorial experiment was conducted in a RCBD with three replications at Ferdowsi University of Mashhad. Experimental Factors included the application of biofertilizers in six levels (phosphate solubilizing bacteria (Bacillus +Pseudomonas), potassium solubilizing bacteria (Thiobacillus sp.), pseudo-mycorrhizae (Piriformospora indica),  Bacillus + Pseudomonas + Thiobacillus , Bacillus + Pseudomonas + Thiobacillus + Piriformospora, and control treatment) and weeds control at three levels (weed control with combination of pyridate and cletodim herbicides, two and three times weeding). Results showed that the distance of the first branch from the soil surface was not affected by biological fertilizers and weed control treatments although it was increased with application of biological fertilizers. The highest pod distance from the soil surface was observed in phosphate solubilizing bacteria + two weeding treatment. The maximum number of main branches per plant was obtained in phosphate solubilizing + two weeding treatment. The highest number of lateral branches per plant was observed in potassium solubilizing bacteria treatment + phosphate solubilizing bacteria + weed control using combination of pyridate and cletodim herbicides. Concomitant using of potassium solubilizing bacteria with phosphate solubilizing bacteria increased the number of pods per plant by 30% compared to the control treatment.There were no significant differences between chemical and weeding of weed control treatments in terms of number of pods per plant. Concomitant consumption of potassium + phosphate solubilizing bacteria and concomitant application of potassium + phosphate solubilizing bacteria along with endophytic fungi mycorrhiza produced the highest chichpea biomass and seed yield. The application of pyridate + cletodim herbicides reduced seed yield to 29 and 24 percent, respectively, compared with two and three times weeding. The highest concentration of shoot phosphorus was obtained in the treatment of endophytic fungi and chemical control of weeds and the highest concentration of potassium was obtained in the combination treatment of potassium and phosphate solubilizing bacteria and endophytic fungi. Generally, in this study biological fertilizers had a positive effect on yield and yield components of chickpea, although the application of combination of pyridate and cletodim herbicides had a negative effect on chickpea yield.

کلیدواژه‌ها [English]

  • biomass
  • Endophytic fungi mycorrhiza
  • herbicide
  • phosphate solubilizing bacteria
  1. اله‌دادی، ا.، شیرخانی، ع؛ و رحیمیان‌مشهدی، ح. 1385. بررسی اثر علف‌هرز بر عملکرد نخود دیم. مجله کشاورزی. ج 8. ش 3: 12-1.
  2. ابوطالبیان، م.ع؛ و الهی، م. 1394. جایگزینی کاربرد کودهای شیمیایی فسفاته با کودهای زیستی در تولید نخود در شرایط پیش تیمار کردن مزرعه­ای. علوم گیاهان زراعی ایران. 46 (3): 394-381.
  3. امامی، ع. 1375. روش‌های تجزیه گیاه. نشریه فنی شماره 182. چاپ اول. موسسه تحقیقات خاک و آب. تهران
  4. ایزدی دربندی، ا؛ و اکرم، ل. 1391. تأثیر علف کش‌های پیریدیت، بنتازون و ایمازتاپیر بر رشد، گره‌زایی و تثبیت زیستی نیترو‍ن در نخود (Cicer arientinum L.). پژوهش‌های حبوبات ایران. ص. 118-105.
  5. آمارنامه کشاورزی. 1394-1393. وزرات جهاد کشاورزی، معاونت برنامه ریزی و اقتصاد.
  6. پارسا، م؛ و باقری، ع. 1392. حبوبات. چاپ اول انتشارات جهاد دانشگاهی مشهد، مشهد.
  7. رسولی، ر. 1391. تأثیر علف‌کش‌های فومسافن، سیمازین و پیریدیت بر رشد، گره‌زایی و تثبیت زیستی نیتروژن در نخود. پایان نامه کارشناسی ارشد. دانشگاه فردوسی مشهد.
  8. مقصودی، آ. 1396. استفاده از اختلاط علف‌کش‌ها و کاربرد مالچ همراه با علف‌کش در کنترل علف‌های هرز نخود (Cicer arietinum L). پایان نامه کارشناسی ارشد. دانشگاه فردوسی مشهد.
  9. وقار، م. س.، نورمحمدی، ق.، شمس، ک.، پازکی، ع؛ و کبرایی، س. 1388. بررسی عملکرد و اجزا عملکرد سه رقم نخود دیم (.Cicer arietinum L) در تاریخ­های مختلف کاشت در کرمانشاه. زراعت و اصلاح نباتات ایران. 5 (1): 1-17.
  10. Al-Karaki, G.N. and Al-Raddad, A. 1997. Effects of arbuscular mycorrhizal fungi and drought stress on growth and nutrient uptake of two wheat genotypes differing in drought resistance. Mycorrhiza 7:83–88.
  11. Azcon, R., Rodríguez, R., Amora-Lazcano, E. and Ambrosano, E. 2008. Uptake and metabolism of nitrate in mycorrhizal plants as affected by water availability and N concentration in soil. European Journal of Soil Science 59: 131–138.
  12. Bacon, C.W. and Hinton, D.M. 2006. Bacterial endophytes: The endophytic niche, its occupants, and its utility. P. 155–194. In: S.S. Gnanamanickam, (ed). Plant-Associated Bacteria. Springer; Netherlands.
  13. Datta, A., Sindel, B.M., Jessop, R.S., Kristiansen, P. and Felton, W.L. 2007. Phytotoxic response and yield of chickpea (Cicer arietinum) genotypes with pre-emergence application of isoxaflutole. Australia Expe Agriculture 47: 1460-1467.
  14. Davies, F.T., Potter, J.R. and Linderman, R.G. 1992. Mycorrhiza and repeated drought exposure affect drought resistance and extraradical hyphae development on pepper plants independent of plant size and nutrient content. Journal of Plant Physiology 139:289–294.
  15. Dimitrios, B., Anestis, K., Aristidis, K., Sotiria, P. and Vassilios, T. 2011. Arbuscular mycorrhizal fungi: a blessing or a curse for weed management in organic olive crops? Australian journal of Crop Science 5: 858-868.
  16. FAO. 2015. FAO Year Book. FAO Publication.
  17. Francis, Rm and Read, D.J. 1995. Mutualism and antagonism in the mycorrhizal symbiosis, with special reference to impacts on plant community structure. Candan Journal Botany 73: 1301-1309.
  18. Friedrich, S., Platonova, N.P. and Karavaiko, G.I. 1991. Chemical and microbiological solubilization of silicates. Acta Biotechnol 3: 187–196.
  19. Gulati, A., Sharma, N., Vyas, P., Sood, S., Rahi, P., Pathania, V. and Prasad, R. 2010. Organic acid production and plant growth promotion as a function of phosphate solubilization by Acinetobacter rhizosphaerae strain BIHB 723 isolated from the cold deserts of the trans-Himalayas. Archives of Microbiology 192: 975–983.
  20. Gupta, G., Parihar, S.S., Ahirwar, N.K., Snehi, S.K. and Singh, V. 2015. Plant growth promoting rhizobacteria (PGPR): Current and future prospects for development of sustainable agriculture. Journal of Microbial and Biochemical Technology 7(2): 96-102.
  21. Jordan, N.R., Zhang, J. and Huerd, S. 2000. Arbuscular-mycorrhizal fungi: Potential roles in weed management. Weed Research 40: 397-410.
  22. Kaur, S., Gupta, A.K. and Kaur, N. 2005. Seed priming increase crop yield possibly by modulating enzymes of sucrose metabolism in chickpea. Journal Agronomy of Crop Science 191: 81-87.
  23. Lian, B., Wang, B., Pan, M., Liu, C. and Henry, H. 2010. Microbial release of potassium from K-bearing minerals by thermophilic fungus Aspergillus fumigatus. Geochimica et Cosmochimica Acta 72:87–98.
  24. Martinez-Viveros, O., Jorquera, M.A., Crowley, D.E., Gajardo, G. and Mora, M.L. 2010. Mechanisms and practical considerations involved in plant growth promotion by rhizobacteria. Soil Science Plant Nutrition 10 (3): 293–319.
  25. Miransari, M., Rejali, F., Bahrami, H.A. and Malakouti, M.J. 2009. Effects of soil compaction and arbuscular mycorrhiza on corn (Zea mays L.) nutrient uptake. Soil and Tillage Research 103: 282-290.
  26. Mora, V., Baigorri, R., Bacaicoa, E., Zamarrenob, A.M. and Garcıa-Mina, J.M. 2012. The humic acid-induced changes in the root concentration of nitric oxide, IAA and ethylene do not explain the changes in root architecture caused by humic acid in cucumber. Environmental and Experimental Botany 76: 24–32.
  27. Pezeshkpour, P., Ardakani, M.R. and Vazan, S. 2014. Effects of vermicompost, mycorrhizal symbiosis and biophosphate soulbilizing bacteria on some characteristics related to chickpea root growth under autumn in the dryland condition. Bulletin of Environment, Pharmacology and Life Sciences 3(2): 19-25.
  28. Rodriguez, H., Fraga, R., Gonzalez, T. and Bashan, Y. 2006. Genetics of phosphate solubilization and its potencial applications for improving plant growth-promoting bacteria. Plant Soil 287:15–21.
  29. Pramanik, J.K., Sayedul Haque, A.K.M. and Jamil Uddin, F.M. 2014. Effect of biofertilizer and weeding on the growth characters and seed yield of summer mungbean. Journal of Environmental Science and Natural Resources 7: 87–92.
  30. Shen, J., Li, C., Mi, G., Li, L., Yuan, L., Jiang, R. and Zhang, F. 2011. Maximizing root/rhizosphere efficiency to improve crop productivity and nutrient use efficiency in intensive agriculture of China. Plant Physiology 156: 997–1005.
  31. Sindhu, S.S., Dua, S., Verma, M.K. and Khandelwal, A. 2010. Growth promotion of legumes by inoculation of rhizosphere bacteria. p 195–235 In: Khan, M.S., Zaidi, A. and Musarrat, J. (eds) Microbes for legume improvement. SpringerWien, New York/Heidelberg.
  32. Sindhu, S.S., Parmar, P. and Phour, M. 2012. Nutrient cycling: Potassium solubilization by microorganisms and improvement of crop growth. In: Armar, N. and Singh, A. (eds) Geomicrobiology and biogeochemistry: Soil biology. Springer-Wien, New York/Heidelberg.
  33. Singh, G., Biswas, D.R., and Marwah, T.S. 2010. Mobilization of potassium from waste mica by plant growth promoting rhizobacteria and its assimilation by maize (Zea mays) and wheat (Triticum aestivum L.). Journal of Plant Nutrition 33: 1236–1251.
  34. Spaepen, S., Vanderleyden, J. and Remans, R. 2007. Indole-3-acetic acid in microbial and microorganism–plant signaling. FEMS Microbiol Review 31: 425–448.
  35. Sylvia, D.M., Hammond, L.C., Bennett, J.M, Haas, J.H. and Linda, S.B. 1993. Field response of maize to a VAM fungus and water management. Agronomy Journal 85: 193–198.
  36. Veresoglou, S.D., Mamolos, A.P., Thornton, B., Voulgari, O.K., Sen, R. and Veresoglou, S. 2011. Medium-term fertilization of grassland plant communities masks plant species-linked effects on soil microbial community structure. Plant and Soil 344: 187–196.
  37. Weil, R.R., Brady, N.C. and Weil, R.R. 2016. The nature and properties of soils. Pearson.
  38. Wu, S.C., Cao, Z.H., Li, Z.G., Cheung, K.C. and Wong, M.H. 2005. Effects of biofertilizer containing N-fixer, P and K solubilizers and AM fungi on maize growth: A greenhouse trial. Geoderma 125(1): 155-166.
  39. Zandonadi, D.B., Santos, M.P., Dobbss, L.B., Olivares, F.L., Canellas, L.P., Binzel, M.L., Okorokova-Facanha, A.L. and Facanha, A.R. 2010. Nitric oxide mediates humic acids-induced root development and plasma membrane H+-ATPase activation. Planta 231: 1025–1036.
  40. Zhang, C. and Kong, F. 2014. Isolation and identification of potassium-solubilizing bacteria from tobacco rhizospheric soil and their effect on tobacco plants. Applied Soil Ecology 82:18–25.