Effect of Microbial Inoculation on the Phosphorus acquisition Efficiency (PACE) of Corn and Sunflower

Document Type : Research Paper

Authors

Abstract

In order to investigate the effect of microbial inoculation on phosphorus acquisition efficiency of sunflower and corn, a glasshouse factorial experiment conducted in completely randomized block design with two plants  (corn and sunflower) and five phosphorus (P) treatments including rock phosphate (RP), RP inoculated with the fungi solubilizing phosphate (RP+F), RP inoculated with the phosphate solubilizing bacteria (RP+B), RP with phosphate solubilizing bacteria and fungi (RP+FB) and soluble P (PS) in three replications. After 9 weeks, plants were harvested and shoot dry weight (SDW) and P concentration (PC) were measured and then PE indices were calculated. The results showed that, there were significant differences in shoot dry weight (SDW), P concentration (PC) and plant total P (TP), P acquisition efficiency (PACE) and P utilization efficiency (PUTE) between microbial treatments and plant types. The fungi inoculation was more effective than other microbial treatments and on average, SDW increased from 7.3 g to 15.5 and PACE from 0.16 to 0.64. The single inoculation of phosphate solubilizing microorganisms increased the P efficiency indices significantly, but the con-inoculation of phosphate solubilizing had no significant effect on PE. Thus, according to the results the application of phosphate rock with phosphate solubilizing microorganisms can be recommended to minimize  the costs of plant production and to reduce environmental problems.  

Keywords


  1. قورچیانی، م. اکبری، غ. علیخانی، ج. دادی، ا. زارعی، م. 1390. ویژگی­های بلال Pseudomonas fluorescence اثر قارچ میکوریزآربسکولار و باکتری، میزان کلروفیل و عملکرد گیاه ذرت در شرایط تنش رطوبتی. مجله دانش آب و خاک. جلد 21. شماره 1.
  2. مدنی، ح.. نادری بروجردی، غ.ر. آقاجانی، ح. و پازکی،  ع.ر. 1389. مقایسه اثرات مصرف کودهای شیمیایی فسفره و باکتری های حل کننده فسفات در عملکرد دانه. مجله زراعت و اصلاح نباتات6(4): 93-104.
  3. موسوی، ر. سپهر. ا. صدقیانی، ح. صمدی، ع. صادق زاده، ب. 1392. بررسی فسفرکارایی ارقام مختلف جو در حضور ریزجانداران حل کننده فسفات. مجله علوم و فنون کشت های گلخانه ای. 4 (16): 27-40.
  4. Attoe, O. J. and R. A. Olsen. 1966. Factors affecting the rate of oxidation of elemental sulfur and that added in rock phosphate sulfur fusion. Soil Science. 101: 317-324.
  5. Akhtar, M.S., and Z.A. Siddiqui. 2008. Arbuscular mycorrhizal fungi as potential bio protestants against plant pathogens. P. 61–97.
  6. Asea, P. E. A. Kucey, R. M. N. and Stewart. J.M. W. B. B. 1988. Inorganic phosphate solubilization by two penicillium species in solution culture and Soil. Soil Biology and Biochemistry 20: 459-464.
  7. Attia M, 1999. The efficiency improvements of mineral fertilizers used and maize yield by arbuscular mycorrhizal fungi and plant-promoting rhizobacteria. Annals of Agricultural Sciences 5:41-44.
  8. Bhattacharyya, P. Datta, S.C. and Dureja, P. 2003. Interrelationship of pH organic acids and phosphorus concentration in soil solution of rhizosphere and non-rhizosphere of wheat and rice crops. Communications in Soil Science and Plant Analysis, 34: 231-245
  9. Bockman, O.C. 1997. Fertilizers and biological nitrogen fixation as sources of plant nutrients: Perspectives for future agriculture. Plant and Soil, 194: 11–14.
  10. Cakmak, I. 2002. Plant nutrition research: Priorities to meet human needs for food in sustainable ways. Plant and Soil, 247:3-24.DOI: 10.1023/A:1021194511492.
  11. Eftekhari1, S.A.. Ardakani1, M.R Farzad, F.R. Paknejad and Hasanabadi, T. 2012. Phosphorus absorption in barley (Hordeum vulgare L.) under different phosphorus application rates and co-inoculation of Pseudomonas fluorescence and Azospirillum lipoferum. Annals of Biological Research 3 (6): 2694-2702.
  12. Gahoonia, T. S. Nielsen, N. E. Joshi, P. A. and Jahoor, A. 2004. A root hairless barley mutant for elucidating genetics of root hairs and phosphorus uptake. Plant and Soil 235: 211–219.
  13. Gahoonia, T.S. and Nielsen, N.E. 1996. Variation in acquisition of soil phosphorus among wheat and barley genotypes. Plant and Soil, 178: 223- 230.
  14. Gaind, S. and Gaur, A.C. 1991. Thermotolerant phosphate solubilizing microorganisms and their interaction with mung bean. Plant and Soil, 133:141-149.
  15. Goldstein, A. H. 1986. Bacterial solubilization of mineral phosphates: Historical perspective and future prospects. American Journal of Alternative Agriculture. 1: 51-57.
  16. Horst, W. J. Abdou, M. and Wiesler, F. 1993. Genotypic differences in phosphorus efficiency of wheat. Plant and Soil, 155/156: 293–296.
  17. Hash, C.T. Schaffert, R.E. and Peacock, I.M. 2002. Prospects for using conventional techniques and molecular biological tools to enhance performance of orphan= crop phants on soils low in available phosphorus. Plant and Soil, 245.DOI: 10.1023/A:1020627926131.
  18. Jodie, N.  Peter, M H. Martin.  B. 2006. Laboratory  tests  can  predict  beneficial  effects  of  phosphate- solubilising bacteria on plants. Soil Biology and Biochemistry. 38: 1521-1526.
  19. Liu, Y. Mi. G. Chen, F. Zhang, J. Zhang, F. 2004. Rhizosphere effect and growth of two maize (Zea mays l.) genotypes with contrasting P efficiency at low P availability. Plant Science. 167: 217-223.
  20. Pearse, S.J. Veneklaas, E.J. Cawthray, G.R. Bolland, MD.A. Lambers, H. 2006. carboxylate release of wheat, canola and 11 grain legume species as affected by phosphorus status. Plant and Soil . 288: 127 139.
  21. Ozturk, L. Eker S. Torun, B. and Cakmak, I. 2005. Variation in phosphorus efficiency among 73 bread and durum wheat genotypes grown in a phosphorus-deficient calcareous soil. Plant and Soil. 269: 69-80.
  22. Suba, Rao. N. S. 1988. Biofertilizers in agriculture. first ed. Oxford and IBH Co. New Dehli: India
  23. Shahbaz, A.M. Oki, Y. and Adachi, T. 2005. Phosphorus nutrition of Brassica cultivars under deficient and adequate levels in solution culture. Pp: 236-237. In: Li, (ed.), Plant Nutrition for Food Security, Human Health and Environmental Protection, Tsinghua University Press. Beijing, Chin
  24. Sepehr, E. Rengel, Z. and Fateh, S. 2010. Differential capacity of two wheat cultivars and white lupin to acquire P from rock phosphate, phytate and soluble P sources. J. Plant Nutrition. 35(8): 1180-1191.
  25. Sepehr, E. Malakouti, M. J. Kholdbarin, B. Karimian, N. J. and Samadi, A. 2009. Genotypic Variation in P efficiency of selected Iranian cereals. International J. Plant Production. 3(3): 17-28.
  26. Wang, X. Tang, C. Guppy, C. N. and Sale, P.G. 2008. Phosphorus acquisition characteristics of cotton (Gossypium hirsutum L.), wheat (Triticum aestivum L.) and white lupin (Lupinus albus L.) under P deficient conditions. Plant and Soil. 312: 117-128.
  27. Wang, Q. R. Li, J. Y. Li, Z.S. and Christie, P. 2005. Screening Chinese wheat germplasm for phosphorus efficiency in calcareous soils. J. Plant Nutrition 28: 489–505.
  28. Wue, S.C. Cao, Z .H. Li, Z. G. Cheung, K.C. Wong, M. H. 2005. Effects of biofertilizer containing N-fixer, P and K solubilizers and AM fungi on maize growth: a greenhouse trial. Geoderma. 125: 155–166.
  29. Vessey, J. K. 2003. Plant growth promoting rhizobacteria as biofertilizers. Plant and Soil, 255: 571–586.
  30. Vance, C.P. UhdeStone, C. and Allan, D. L. 2003. Phosphorus acquisition and use: critical adaptations by plants for securing a nonrenewable resource. New Phytologist., 157: 423–447.
  31. Xiang g-wen, P. Wenbin, L. I. Qiuying, Z. Yan-hua, L. I. Ming-shan. L. 2008. Assessment on Phosphorus Efficiency Characteristics of Soybean Genotypes in Phosphorus-Deficient Soils. Agricultural Sciences in china. August 2008, Pages 958–969.
  32. Yan, X.. H. Liao, S. E. Beebe, M. Blair, W. and ynch, J. P. L 2004. QTL mapping of root hair and acid exudation traits and their relatioshipe to phosphorus uptake in common bean. Plant and Soil, 265: 17-29.DIO;10.1007/s11104-005-0693-1.