کارایی حل‌کنندگی فسفات سیانوباکتری‌های جداسازی‌شده از خاک‌های شالیزاری و تأثیر آن بر جذب فسفر و عملکرد برنج

نوع مقاله: مقاله پژوهشی

نویسندگان

1 استادیار گروه علوم و مهندسی خاک، دانشکده کشاورزی، دانشگاه شهرکرد

2 استاد گروه علوم و مهندسی خاک، دانشکده کشاورزی، دانشگاه تبریز

3 استاد گروه اصلاح نباتات، پژوهشکده ژنتیک و زیست‌فناوری کشاورزی طبرستان، ساری

4 استاد پژوهشکده علوم پایه کاربردی جهاد دانشگاهی، دانشگاه شهید بهشتی، تهران

10.22092/sbj.2019.123167.141

چکیده

فسفر، یکی از عناصر پرمصرف و ضروری برای رشد گیاهان می­باشد که اغلب خاکها ذخایر کافی آن را داشته ولی مقادیر قابل استفاده آن برای گیاهان بسیار ناچیز است. یکیازروش­هایتأمینفسفرموردنیاز برنج در شرایط شالیزار، بهره­گیری از سیانوباکتری­های حل­کننده فسفات می­باشد زیرا اغلب سویه­های این گروه باکتری، ضمن استقرار مناسب در شرایط غرقابی، توان تثبیت بیولوژیک نیتروژن نیز دارند. در این تحقیق، پس از جداسازی سیانوباکتری­ها از اراضی شالیزاری گیلان، خالص­سازی و شناسایی مورفولوژیک و مولکولی (ژن 16S rDNA) جدایه­ها، توانایی حل­کنندگی فسفات آنها ارزیابی شده و سپس سویه­های برتر برای کشت گلدانی گیاه برنج (رقم طارم هاشمی) انتخاب شدند. آزمایش گلدانی بصورت فاکتوریل در قالب طرح پایه کاملاً تصادفی با چهار سطح کود نیتروژن (صفر، 23/0، 35/0و 46/0 گرم اوره در گلدان) و هفت سویه سیانوباکتری و تیمار شاهد بدون باکتری در سه تکرار اجرا گردید. نتایج شناسایی مورفولوژیک و مولکولی، سویه­های جداسازی شده را در چهار راسته Chroococcales، Oscillatoriales، Nostocales و Stigonematales طبقه­بندی نمود. سویه Anabaena sp. GGuCy-17 نسبت به بقیه سویه­ها بالاترین توان حل­کنندگی فسفات (641 میلی­گرم بر لیتر) داشت و بعد از آن سویه Cylendrospermum sp. GGuCy-25 (130 میلی­گرم بر لیتر) قرار گرفت. بیشترین عملکرد دانه (6/15 گرم در گلدان)، بیشترین میزان جذب نیتروژن (3/14 گرم در گلدان) و فسفر (08/2 گرم در گلدان) در تیمار تلقیح شده با سویه Cylindrospermum sp. GGuCy-25 حاصل گردید. این سویه را می­توان همانند سویه­های برتر در بهبود رشد و عملکرد برنج بعد از آزمایش در شرایط شالیزار در تولید کود زیستی سیانوباکتری پیشنهاد نمود.

کلیدواژه‌ها


عنوان مقاله [English]

Phosphate solubilizing efficiency of cyanobacteria isolated from paddy soil and their effects on rice (Oriza sativa L.) yield and phosphorus uptake

نویسندگان [English]

  • Saheb Soodaee Mashaee 1
  • N. Aliasgharzad 2
  • Ghorbanali Nematzadeh 3
  • Neda Soltani 4
1 Assistant Professor, Dept. of Soil Science and Engineering, Shahrekord University
2 Professor of soil biology and biotechnology, Department of Soil Science, University of Tabriz
3 Professor of biotechnology, The Sari University of Agricultural and Natural Resources and Biotechnology Institute of Tabarestan, Mazandaran
4 Professor, Department of Biology, Research Institute of Applied Science, Shahid Beheshti University, Tehran
چکیده [English]

Phosphorus is one of the most important and essential elements for plant growth but it is not available for plants in many soils. Inoculation of paddy soils with phosphate solubilizing cyanobacteria is an efficient procedure for supplying phosphorus for rice plants. In this study, cyanobacteria isolated from Guilan paddy fields and purified. Cyanobacteria isolates identified by using morphological characteristics and molecular techniques. Their phosphate solubilization ability was evaluated and then superior strains for rice pot planting (Tarom Hashemi cultivar) was selected. A greenhouse experiment was conducted to evaluate the selected cyanobacteria isolates. The experiment carried out in a factorial completely randomized design with four levels of nitrogen (0, 0.23, 0.45 and 0.46 g urea per pot) and seven strains of cyanobacteria and control without bacteria with three replications. The results showed that the isolates were classified into four phyla of Chroococcales, Oscillatoriales, Nostocales and Stigonematales. Anabaena sp. GGuCy-17 strain had the highest phosphate solubilizing potential (641 mg.L-1) compared to other strains, and the Cylendrospermum sp. GGuCy-25 (130 mg.L-1) was the second in this respect. The highest grain yield (15.6 g.pot-1), the highest total nitrogen (14.3 g.pot-1) and phosphorus uptake (2.8 g.pot-1) were obtained in plants inoculated with Cylindrospermum sp. GGuCy-25. After further studies in different paddy field conditions, these efficient strains could be accounted for production of cyanobacterial biofertilizers to improve rice growth and yield. 

کلیدواژه‌ها [English]

  • Phosphorus uptake
  • 16S rDNA gene
  • Phosphate solubilizing cyanobacteria
  • Grain yield
  1. سلطانی ن.، دزفولیان م.، شکروی ش.، بافته­چی ل.، احسان ش. 1387. جداسازی و شناسایی مورفولوژیک و مولکولی گونه­های جدید سیانوباکتری از منطقه فیروز کوه (استان تهران) با استفاده از محیط کشت­های مختلف. نشریه علوم دانشگاه تربیت معلم، جلد8، شماره4.
  2. سودایی ص.، نعمت­زاده ق.، علی­اصغرزاد ن.، سلطانی ن. 1395. بررسی فیزیولوژیک سیانوباکترهای خاک­زی شالیزارهای استان گیلان و به­کارگیری سوی­های برتر در بهبود رشد و عملکرد گیاه برنج. نشریه دانش آب و خاک، جلد 26، شماره1 : 258-247.
  3. Adhya, T.K., Kumar, N., Reddy, G., Podile, A.R., Bee, H. and Samantaray, B. 2015. Microbial mobilization of soil phosphorus and sustainable P management in agricultural soils. Current Science 108: 1280–1287.
  4. Aliasgharzad, N. Shirmohamadi, E. and Oustan, S. 2009. Siderophore production by mycorrhizal sorghum roots under micronutrient deficient condition. Soil and Environment 28: 2. 119-123.
  5. Bahmanyar, MA. and Soodaee Mashaee, S. 2012. Influences of nitrogen and potassium top dressing on yield and yield components as well as their accumulation in rice (Oryza sativa). African Journal of Biotechnology 9(18): 2648-2653.
  6. Choudhary, KK., Bimal, R. 2010. Distribution of nitrogen-fixing cyanobacteria (Nostocaceae) during rice cultivation in fertilized and unfertilized paddy fields. Nordic Journal of Botany 28: 100-103.
  7. Clesceri LS, Greenberg AE and Eaton AD. 1999. Standard Methods for the Examination of Water and Wastewater (20th ed.). American Public Health Association, American Water Works Association, Water Environment Federation, pp. 1239-1263.
  8. Desikhachary, T. V. 1959. Cyanophyta. Indian Council of Agricultural Research Publishers. pp. 565.
  9. Dhar, DW., Prasanna, R. and Singh, BV. 2007. Comparative Performance of Three Carrier Based Blue Green Algal Biofertilizers for Sustainable Rice Cultivation. Journal of Sustainable Agriculture 30(2): 41-52.
  10. Esfehani, M. Sadrzade, SM., Kavoosi, M. and Dabagh-Mohammad-Nasab, A. 2005. Study the effect of different levels of nitrogen and potassium fertilizers on growth, grain yield, yield components of rice (Oryza sativa) cv. Khazar. Iran Agronomy Journal 7(3): 226-241.
  11. FAO. 2011. FAO: Food and Agricultural commodities production. Available online at: http://www.faostat.fao.org/site/339/default/aspe x/. Accessed 14 April 2011.
  12. Ghaderi, A. Aliasgharzad, N. Ostan, S., Olsson, PA. 2008. Efficiency of three Pseudomonas isolates in releasing phosphate from an artificial variable-charge mineral (iron III hydroxide). Soil and Environment 27(1): 71-76.
  13. Ghosh, TK. and Saha, KC. 1992. Effects of inoculation with N2-fixing cyanobacteria on the nitrogenase activity in soil and rhizosphere of wetland rice (Oryza sativa L.). Biololgy and Fertility Soils 16: 16-20.
  14. Gugger, MF. and Hoffmann, L. 2004. Polyphyly of true branching cyanobacteria (Stigonematales), International Journal of Systematic and Evolutionary Microbiology 54: 349-357.
  15. Hendrayanti, D., Khoiriyah, I., Fadilah, N. and Salamah, A. 2018. Diversity of N2-fixing cyanobacteria in organic rice field during the cycle of rice crops. Inventing Prosperous Future through Biological Research and Tropical Biodiversity Management. https://doi.org/10.1063/1.5050107.
  16. Iteman, I., Rippka, R., TandeandeMarsac, N.,and Herdman, M. 2002. 16 rDNA analyses of planktonic heterocystous cyanobacteria, including members of the genera Anabaenopsis and Cyanospira. Microbiology 148: 481-496.
  17. Johansson, C. and Bergman, B. 1994. Reconstitution of the symbiosis of Gunnera manicata Linden: cyanobacterial specificity. New Phytology 126:643–652.
  18. John, D. M. Whitton, B. A. and Brook, A.J. 2003. The freshwater algal flora of the British Isles, an identification guide to freshwater and terrestrial algae. Cambridge University Press.
  19. Johri, JK., Surange, S. and Nautiyal, CS. 1999. Occurrence of salt, pH, and temperature-tolerant, phosphate-solubilizing bacteria in alkaline soils. Current Microbiology 39: 89–93.
  20. Karthikeyan, N. Prasanna, R. Nain, L. Kaushik, B.D. 2007. Evaluating the potential of plant growth promoting cyanobacteria as inoculants for wheat. European Journal of Soil Biology 43 (1): 23-30.
  21. Kaushik, B.D. 1987. Laboratory Methods for Blue-green Algae. Associated Publishing Company. Pp. 171.
  22. Khan, M.S. Zaidi, A. Wani, P.A. 2007. Role of phosphate-solubilizing microorganisms in sustainable agriculture-a review. Agronomy Sustainable Development 27: 29-43.
  23. Komarek, J., Kastovsky, J., Mares, J. and Johansen, LR. 2014. Taxonomic classification of cyanoprokaryotes (cyanobacterial genera) 2014, using a polyphasic approach. Preslia 86: 295–335.
  24. Korelusova, J. 2005. Polyphasic approach to the phylogeney of selected cyanobacteria. BC. Theses Faculty of Biology Science, University of south Bohemia, 139pp.
  25. Kucey, R.M.N. 1983. Phosphate-solubilizing bacteria and fungi in various cultivated and virgin Alberta soils. Canadian Journal of Soil Science 63(4): 671-678.‏
  26. Lyra, C. Hantula, J. Vainio, E. Rapala, J. Rouhiainen, L. and Sivonen, K. 1997. Characterization of Cyanobacteria by SDS-PAGE of whole-cell proteins and PCR/RFLP of the 16S rRNA gene. Archives of Microbiology 168, 176-184.
  27. Macrae, A. 2000. The use of 16S rDNA methods in soil microbiology ecology. Brazilian Journal of Microbiology 31:77-82.
  28. Madingan, M.T., Martinko J.M., Stahl D.A. and Clark D.P. 2012. Brock Biology of Microorganisms (13th ed).pp. 532-536. Publishing as Benjamin Cummings, San Francisco. Manufactured in the U.S.A.
  29. Mandal, B., Das, SC. and Mandal, LN. 1992. Effect of growth and subsequent decomposition of cyanobacteria on the transformation of phosphorus in submerged soils. Plant and Soil 143: 289-29.
  30. Mishra, U. Choudhary, KK, Pabbi, S, Dhar, DW, Singh, PK. 2005. Influence of blue green algae and Azolla inoculation on specific soil enzymes under paddy cultivation. Asian Journal Microbiology and Biotechnology Environmental Science 7: 9-12.
  31. Mishra, U. Choudhary, KK. Pabbi, S. Dhar, DW. Singh, PK. 2004. Influence of blue green algae and Azolla inoculation on specific soil enzymes under paddy cultivation. Asian Journal Microbiology and Biotechnology Environmental Science 7: 9-12.
  32. Mukherjee, C., Chowdhury, R. and Ray, K. 2015. Phosphorus Recycling from an Unexplored Source by Polyphosphate Accumulating Microalgae and Cyanobacteria — A Step to Phosphorus Security in Agriculture. Frontiers in Microbiology 6: 1-7.
  33. Nain, L., Rana A. Joshi M., Jadhav, S.D. Kumar D. Shivay, Y.S. Paul, S. Prasanna R. 2010. Evaluation of synergistic effects of bacterial and cyanobacterial strains as biofertilizers for wheat, Plant and Soil 331: 217–230.
  34. Nuble, U., Garcial-Pichel, F. and Muyzer, G. 1997. PCR primers to amplify 16s rDNA gene from Cyanobacteria, Applied Environmental Microbiology 63: 3327-3332.
  35. Osborne, LD. and Rengel Z. 2002. Screening cereals for genotypic variation in efficiency of phosphorus uptake and utilisation. Australian journal of agricultural research 53.3: 295-303.
  36. Pandey, VD. and Parveen, S. 2011. Alkaline phosphatase activity in cyanobacteria: physiological and ecological significance. Indian Journal of Fundamental and Applied Life Sciences 1(4), 295-303.
  37. Prasanna, R. Jaiswal, P. Shrikrishna, J. Joshi, M., Nain, L., Rana, A. and Shivay, YS. 2012. Evaluating the potential of rhizo-cyanobacteria as inoculants for rice and wheat. Journal of Agricultural Technology 8(1): 157-171.
  38. Prasanna, R., Sharma, E., Sharma, P., Kumar, A., Kumar, R., Gupta, V., Pal, R.K., Shivay, Y.S., Nain, L. 2013. Soil fertility and establishment potential of inoculated cyanobacteria in rice crop grown under non-flooded conditions. Paddy Water Environmental 11:175–183.
  39. Ray, K., Mukherjee, C. and Ghosh, AN. 2013. A Way to Curb Phosphorus Toxicity in the Environment: Use of Polyphosphate Reservoir of Cyanobacteria and Microalga as a Safe Alternative Phosphorus Biofertilizer for Indian Agriculture. Environmental Science Technology 47: 11378−11379.
  40. Roger, P.A. and Ladha, J. K. 1992. Biological N2-fixation in wetland rice fields, estimation and contribution to nitrogen balance. Plant and Soil 141, 41–55.
  41. Stanier, R.Y. Kunisawa, R. Mandal, M. and Cohen-Bazire, G. 1971. Purification and properties of unicellular blue green algae (Order: Chroococcales), Bacteriological Reviwe. 35: 171-305.
  42. Yandigeri, MS. Yadav, AK. Srinivasan, R. Kashyap, S. Pabbi, S. 2011. Studies on mineral phosphate solubilization by cyanobacteria Westiellopsis and Anabaena, Microbiology 80(4): 558-565,
  43. Yang, J. Zhang, J. 2010 Crop management technique to enhance harvest index in rice. Journal of Experimental Botany, 61: 3177-3189.
  44. Yu, X. Liu, X. Zhu, TH. Liu, GH. Mao, C. 2011. Isolation and characterization of phosphate solubilizing bacteria from walnut and their effect on growth and phosphorus mobilization, Biology and Fertility Soils 47 (4): 437–46.