اثر برخی ریز جانداران در کاهش آلودگی یک خاک آهکی آلوده به نفت خام

نوع مقاله: مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری بخش علوم خاک دانشگاه شیراز

2 دانشیار بخش علوم خاک دانشگاه شیراز

3 استاد بخش علوم خاک دانشگاه شیراز

چکیده

آزمایشی گلخانه­ای به صورت فاکتوریل در قالب طرح کاملاً تصادفی به منظور بررسی اثر تیمارهای زیستی (باکتری سودوموناس فلورسنس، باکتری میکروکوکوس یوننانسیس، قارچ کلارودیوگلوموس اتونیکاتوم و قارچ فونلیفورمیس موسه) بر پاسخ­های گیاه وتیور در آلودگی نفت خام (0، 2 و 4 درصد وزنی) انجام شد. نتایج نشان داد افزایش سطح آلودگی نفتی وزن خشک اندام هوایی و ریشه و همچنین درصد کلنیزاسیون ریشه را کاهش داد اما تنفس میکروبی و غلظت کل هیدروکربن­ها در خاک پس از برداشت را افزایش داد. تلقیح باکتری میکروکوکوس یوننانسیس و قارچ فونلیفورمیس موسه وزن خشک اندام هوایی را افزایش داد، همه تیمارهای بیولوژیکی بجز باکتری سودوموناس فلورسنس افزایش وزن خشک ریشه را موجب گردیدند. مایه زنی قارچ کلارودیوگلوموس اتونیکاتوم باعث افزایش معنی­دار غلظت و جذب آهن، و قارچ فونلیفورمیس موسه باعث افزایش معنی­دار میانگین غلظت روی و جذب روی و آهن شد. همچنین مایه زنی قارچ باعث افزایش درصد کلنیزاسیون ریشه شدند. از بین ریزجانداران مطالعه شده باکتری میکروکوکوس یوننانسیس و قارچ فونلیفورمیس موسه تنفس میکروبی را افزایش دادند که به نوبه خود مقدارکل هیدروکربن­های باقی مانده در خاک پس از برداشت را کاهش داد. نتایج ما نشان داد که از بین ریزجانداران باکتری میکروکوکوس یوننانسیس و قارچ فونلیفورمیس موسه اثرات مطلوب­تری در زیست پالایی و مقاومت گیاه به آلودگی نفتی دارند.

کلیدواژه‌ها


عنوان مقاله [English]

Applications of Microorganisms in Bioremediation of a Crude Oil Contaminated Calcareous Soil

نویسندگان [English]

  • S. Keshavarz 1
  • R. Ghasemi-Fasaei 2
  • A. M. Ronaghi 3
  • M. Zarei 2
1 PhD Student, Department of Soil Science, College of Agriculture, Shiraz University, Iran
2 Associate Professor, Department of Soil Science, College of Agriculture, Shiraz University, Iran
3 Professor, Department of Soil Science, College of Agriculture, Shiraz University, Iran
چکیده [English]

A greenhouse experiment was conducted in a completely randomized design with factorial arrangement to investigate the influence of biological treatments (Pseudomonas fluorescens, Micrococcus yunnanensis, Claroideoglomus etunicatum and Funneliformis mosseae) on Vetiver grass grown on a crude oil contaminated calcareous soil (0, 2 and 4% crude oil). Results showed that the shoot and root dry weight and root colonization decreased in crude oil treatments. While the microbial respiration and total hydrocarbon concentration in post-harvest soil increased significantly. Soil inoculation with Micrococcus yunnanensis and Funneliformis mosseae had a positive effect on shoot dry weight but not for Pseudomonas fluorescens treatment. Iron concentration and iron and zinc concentrationsenhanced significantly in Claroideoglomus etunicatum and Funneliformis mosseae treatments respectively. Root colonization also increased when mycorrhiza inoculation applied to soil samples. Micrococcus yunnanensis and Funneliformis mosseae increased microbial soil respiration and total hydrocarbon content reduced in post-harvest soil. Our result showed that among tested microorganisms, Micrococcus yunnanensis and Funneliformis mosseae had more positive effects on bioremediation and plant growth in crude oil contaminated calcareous soil.

کلیدواژه‌ها [English]

  • Arbuscular mycorrhiza
  • Plant growth promoting rhizobacteria
  • Oil pollution
  • Vetiver
  1. رسولی صدقیانی، م. خداوردیلو، ح. برین، م. و کاظم علیلو، س. 1395. تأثیر باکتری­های PGPR و قارچ­های میکوریزا- آربسکولار بر رشد و برخی ویژگی­های فیزیولوژیک خارزن بابا در خاک آلوده به کادمیوم. مجله دانش آب و خاک. جلد 30، 542-554.
  2. زارعی، 1387. بررسی تنوع قارچ­های میکوریزی آربسکولار در خاک­های آلوده به فلزات سنگین و کارایی آن­ها در گیاه پالایی. رساله دکتری خاکشناسی پردیس کشاورزی و منابع طبیعی دانشگاه تهران.
  3. شهسوار، ع. طارق، م. زارعی، م. و اصل مشتاقی، ا. 1396. برهمکنش قارچ­های میکورز آربسکولار و منابع آهن بر ویژگی­های رشد و جذب عناصر غذایی پایه مکزیکن لایم. نشریه دانش آب و خاک. جلد 27، 173-184.
  4. Ahmad, F., Ahmad, I. and Khan, M. 2008. Screening of free-living rhizospheric bacteria for their multiple plant growth promoting activities. Microbiological Research 163: 173-181.
  5. Al-Awadhi, H., Dashti, N., Kansour, M., Sorkhoh, N. and Radwan, S. 2012. Hydrocarbon-utilizing bacteria associated with biofouling materials from offshore waters of the Arabian Gulf. International Biodeterioration and Biodegradation 69: 10-16.
  6. Almansoory, A.F., Hasan, H.A., Idris, M., Abdullah, S.R.S. and Anuar, N. 2015. Potential application of a biosurfactant in phytoremediation technology for treatment of gasoline-contaminated soil. Ecological Engineering 84: 113-120.
  7. Almaghrabi, O.A., Massoud, S.I. and Abdelmoneim, T.S. 2013. Influence of inoculation with plant growth promoting rhizobacteria (PGPR) on tomato plant growth and nematode reproduction under greenhouse conditions. Saudi Journal of Biological Sciences 20: 57-61.
  8. Anokhina, T.O., Kochetkov, V.V., Zelenkova, N.F., Balakshina, V.V. and Boronin, A.M. 2004. Biodegradation of phenanthrene by Pseudomonas bacteria bearing rhizospheric plasmids in model plant–microbial associations. Applied Biochemistry and Microbiology 40: 568-572.
  9. Bahraminia, M., Zarei, M., Ronaghi, A. and Ghasemi-Fasaei, R. 2016. Effectiveness of arbuscular mycorrhizal fungi in phytoremediation of lead-contaminated soil by vetiver grass. International Journal of Phytoremediation 18: 730-737.
  10. Basumatary, B. and Bordoloi, S. 2016. Phytoremediation of Crude Oil-Contaminated Soil Using Cynodon dactylon (L.) Pers. In Phytoremediation 4: 41-51.
  11. Bouyoucos, G.J. 1962. Hydrometer method improved for making particle size analyses of soils. Agronomy Journal 54: 464-465.
  12. Cheema, S.A., Khan, M.I., Shen, C., Tang, X., Farooq, M., Chen, L., Zhang, C. and Chen, Y. 2010. Degradation of phenanthrene and pyrene in spiked soils by single and combined plants cultivation. Journal of Hazardous Materials 177: 384-389.
  13. de Souza, J.T., de Boer, M., de Waard, P., van Beek, T.A. and Raaijmakers, J.M. 2003. Biochemical, genetic, and zoosporicidal properties of cyclic lipopeptide surfactants produced byPseudomonas fluorescens. Applied and Environmental Microbiology 69: 87161-7172.
  14. Effendi, H., Munawaroh, A. and Ayu, I.P. 2017. Crude oil spilled water treatment with Vetiveria zizanioides in floating wetland. The Egyptian Journal of Aquatic Research 43: 185-193.
  15. Finlay, R.D. 2004. Mycorrhizal fungi and the irmultifunctional roles. Mycologist 18: 91-96.
  16. Gao, Y., Li, Q., Ling, W. and Zhu, X. 2011. Arbuscular mycorrhizal phytoremediation of soils contaminated with phenanthrene and pyrene. Journal of Hazardous Materials 185: 703-709.
  17. Ghavami, N., Alikhani, H.A., Pourbabaei, A.A. and Besharati, H. 2017. Effects of two new siderophore-producing rhizobacteria on growth and iron content of maize and canola plants. Journal of Plant Nutrition 40: 736-746.
  18. Hou, J., Liu, W., Wang, B., Wang, Q., Luo, Y. and Franks, A.E. 2015. PGPR enhanced phytoremediation of petroleum contaminated soil and rhizosphere microbial community response. Chemosphere 138: 592-598.
  19. Hovsepyan, A. and Greipsson, S. 2004. Effect of arbuscular mycorrhizal fungi on phytoextraction by corn (Zea mays) of lead-contaminated soil. International Journal of Phytoremediation 6: 305-321.
  20. Hutchinson, S.L., Schwab, A. and Banks, M. 2001. Phytoremediation of aged petroleum sludge: effect of irrigation techniques and scheduling. Journal of Environmental Quality 30: 1516.
  21. Isermeyer, H. 1952. Eine einfache methode zur bestimmung der bodenatmung und der karbonate im boden. Journal of Plant Nutrition and Soil Science 56: 26-38.
  22. Joner, E.J., Leyval, C. and Colpaert, J.V. 2006. Ectomycorrhizas impede phytoremediation of polycyclic aromatic hydrocarbons (PAHs) both within and beyond the rhizosphere. Environmental Pollution 142: 34-38.
  23. Kormanik, P.P. and McGraw, A.A. 1982. Quantification of vesicular-arbuscular mycorrhizae in plant roots, In: Schenck NC. Methods and Principles of Mycorrhizal Research. American Phytopathological Society, St. Paul 37-45.
  24. Khosravi, A., Zarei, M. and Ronaghi, A. 2018. Effect of PGPR, phosphate sources and vermicompost on growth and nutrients uptake by lettuce in a calcareous soil. Journal of Plant Nutrition 41: 80-89.
  25. Khosravi, A., Zarei, M. and Ronaghi, A. 2017. Influence of biofertilizers and phosphate sources on the phosphorus uptake of lettuce and chemical forms of phosphorus in soil. Communications in Soil Science and Plant Analysis 48: 2701-2714.
  26. Labud, V., Garcia, C. and Hernandez, T. 2007. Effect of hydrocarbon pollution on the microbial properties of a sandy and a clay soil. Chemosphere 66: 1863-1871.
  27. Leyval, C. and Joner, E.J. 2001. Bioavailability of heavy metals in the mycorrhizosphere. Trace Elements in The Rhizosphere 165-185.
  28. Lindsay, W.L. and Norvell, W.A. 1978. Development of a DTPA soil test for zinc, iron, manganese, and copper. Soil Science Society of America Journal 42: 421-428.
  29. Liu, J.L., Xie, B.M., Shi, X.H., Ma, J.M. and Guo, C.H. 2015. Effects of two plant growth-promoting rhizobacteria containing 1-aminocyclopropane-1-carboxylate deaminase on oat growth in petroleum-contaminated soil. International Journal of Environmental Science and Technology 12: 3887-3894.
  30. Lu, Y.F. and Lu, M. 2015. Remediation of PAH-contaminated soil by thecombination of tall fescue, arbuscular mycorrhizal fungus and epigeic earthworms. Journal of Hazardous Materials 285: 535-541.
  31. Nelson, R. E. and Sommers, L. E. 1982. Total carbon, Organic carbon and organic matter. In A. L. Page et al. (ed) Methods of Soil Analysis. Part2. 2nd. Agron. Monogr. 9. ASA and SSSA, Madison, WI. 539-579.
  32. Olsen, S.R. and Sommers, L.E. 1982. Phosphorus. p. 403–427. In: Page, A.L. (ed.) Methods of soil analysis. Part 2. 2nd ed. Agron. Monogr. No. 9. ASA and SSSA, Madison, WI.
  33. Peña-Castro, J.M., Barrera-Figueroa, B.E., Fernández-Linares, L., Ruiz-Medrano, R. and Xoconostle-Cázares, B. 2006. Isolation and identification of up-regulated genes in bermudagrass roots (Cynodon dactylon L.) grown under petroleum hydrocarbon stress. Plant Science 170: 724-731.
  34. Rhoades, J. 1996. Salinity: Electrical conductivity and total dissolved solids. Methods of Soil Analysis Part 3—Chemical Methods 417-435.
  35. Shahsavar, A.R., Refahi, A., Zarei, M. and Aslmoshtaghi, E. 2016. Analysis of the effects of Glomus etunicatum fungi and Pseudomonas fluorescence bacteria symbiosis on some morphological and physiological characteristics of Mexican lime (Citrus aurantifolia L.) under drought stress conditions. Advances in Horticultural Science 30: 39-45.
  36. Turnau, K., Jurkiewicz, A., Lingua, G., Barea, J. and Gianinazzi-Pearson, V. 2005. Role of arbuscular mycorrhiza and associated microorganisms in phytoremediation of heavy metal-polluted sites. Trace elements in the environment. Biogeochemistry, biotechnology, and bioremediation. CRC Taylor & Francis, Boca Raton, London, New York 235-252.
  37. Willumsen, P.A. and Arvin, E. 1999. Kinetics of degradation of surfactant-solubilized fluoranthene by a Sphingomonas paucimobilis. Environmental Science and Technology 33: 2571-2578.
  38. Yateem, A. 2013. Rhizoremediation of oil-contaminated sites: a perspective on the Gulf War environmental catastrophe on the State of Kuwait. Environmental Science and Pollution Research 20: 100-107.
  39. Yu, X., Wu, S., Wu, F. and Wong, M. 2011. Enhanced dissipation of PAHs from soil using mycorrhizal ryegrass and PAH-degrading bacteria. Journal of Hazardous Materials 186: 1206-1217.
  40. Zarei, M., Saleh-Rastin, N., Salehi-Jozani, G.,Savaghebi, G. and Francois, B. 2008. Arbuscular mycorrhizal abundance in contaminated soils around a zinc and lead deposit. Europen Journal of Soil Biology 4: 381-391.
  41. Zarei, M., Saleh-Rastin, N. and Savaghebi, G. 2011. Effectiveness of arbuscular mycorrhizal fungi in phytoremediation of zinc polluted soils using maize (zea mays l.). JWSS-Isfahan University of Technology 15: 151-168.