تأثیر سدیم دو دسیل بنزن سولفونات (SDBS) بر برخی شاخص‌های زیستی خاک

نوع مقاله: مقاله پژوهشی

نویسندگان

1 دانشجوی سابق کارشناسی ارشد دانشگاه تبریز

2 استاد دانشگاه تبریز

چکیده

هدف از این مطالعه بررسی اثر سدیم دودسیل بنزن سولفونات (SDBS) بر برخی شاخص‌های زیستی (تنفس میکروبی، کربن زیتوده میکروبی، نیتروژن زیتوده میکروبی، فسفر زیتوده میکروبی، سهم متابولیک و سهم میکروبی) در یک خاک از منطقه اسکو بود. آزمایش به‌‌صورت اندازه‌گیری‌های تکرار‌شونده با فاکتور بین موردی SDBS در چهار سطح 0، 01/0، 05/0 و 25/0 درصد و متغیر درون موردی زمان در شش سطح 2، 7، 14، 30، 60، 90 روز در سه تکرار انجام شد. نتایج نشان داد که با افزودن SDBS همه شاخص‌های زیستی (به‌استثنای سهم متابولیک که افزایش یافت) در مقایسه با شاهد کاهش یافتند. تنفس میکروبی در هر سطح SDBS با زمان کاهش یافت و در پایان انکوباسیون در سطوح 01/0 و 05/0 درصد به‌طور معناداری کمتر از سطوح صفر و 25/0 درصد بود. روند اخیر برای کربن زیتوده میکروبی نیز مشاهده شد که علت آن تحت تنش بودن جامعه میکروبی خاک در سطوح 01/0 و 05/0 درصد و ایجاد تحمل القایی در سطح 25/0 درصد بود. نیتروژن زیتوده میکروبی در تیمارهای SDBS افزایش یافت که علت آن می‌تواند افزایش فعالیت ازتوباکترها یا سایر باکتری‌های تثبیت‌کننده نیتروژن که نسبت به حضور SDBS حساسیت کمتری داشته و قادرند از آن تغذیه نمایند، باشد. بیشترین مقدار فسفر زیتوده میکروبی مربوط به تیمارهای SDBS در روز دوم انکوباسیون بود که بعد از یک هفته به‌شدت کاهش یافت و به دنبال آن تغییرات ناچیز بود. 

کلیدواژه‌ها


عنوان مقاله [English]

Impact of sodium dodecylbenzene sulfonate (SDBS) On some soil biological indices

نویسندگان [English]

  • A. Barzegar Ganbari 1
  • S. Oustan 2
  • N. Aliasgharzad 2
  • M. R. Neyshabouri 2
1 Former MSc student of University of Tabriz
2 Professor, University of Tabriz
چکیده [English]

The aim of this study was to assess the impact of SDBS on some biological indices including microbial respiration, microbial biomass carbon, nitrogen and phosphorus, microbial quotient and metabolic quotient in a soil from Osku area. The experiment was conducted as repeated measures with between-subjects factor of SDBS at four levels of 0, 0.01, 0.05 and 0.25% and within-subjects variable of time intervals at six levels of 2, 7, 15, 30, 60 and 90 days with three replications. Based on results, all biological indices declined (except for metabolic quotient which increased) in comparison with the control after application of SDBS. Soil microbial respiration decreased over time in each level of SDBS and the corresponding values were significantly lower at 0.01 and 0.05% of SDBS than those at zero and 0.25% of SDBS. This trend was also observed for soil microbial biomass carbon. Being soil microbial community under stress at 0.01 and 0.05% of SDBS and induction of tolerance at 0.25% of SDBS could explain these results. Soil microbial biomass nitrogen on the second day of incubation increased with increasing the SDBS level and decreased over time in all levels of SDBS (expect for control). Increasing microbial nitrogen biomass in the SDBS treated soils might be due to increasing the activity of Azotobacters or other nitrogen-fixing bacteria which are less sensitive to SDBS and are able to feed through it. The highest values of microbial biomass phosphorus were recorded in SDBS treated soils on the second day of incubation, but the values severely decreased after one week and thereafter the changes were negligible. 

کلیدواژه‌ها [English]

  • Metabolic quotient
  • Microbial biomass
  • Microbial quotient
  • Soil biological activity
  • Surfactant
  1. علی‌اصغرزاد ن. 1385. روش‌های آزمایشگاهی در بیولوژی خاک (ترجمه)، انتشارات دانشگاه تبریز.
  2. علی‌اصغرزاد ن. 1389. میکروبیولوژی و بیوشیمی خاک (ترجمه)، انتشارات دانشگاه تبریز.
  3. مصطفائی خروانق م.، علی اصغرزاد ن.، اوستان ش. 1396. تحمل القایی در جمعیت میکروبی ناشی از آلودگی خاک (PICT) با سطوح مختلف لوریل بنزن سولفونات. محیط زیست طبیعی، مجله منابع طبیعی ایران. جلد 70، شماره 3، صفحات 685-697.
  4. Ahmed, F., Ishiguro M. and Akae, T. 2012. Influence of organic matter on the adsorption of sodium dodecylbenzene sulfonate on volcanic ash soil. Journal of Soil Science and Environmental Management 3:23-27.
  5. Aliasgharzad, N., Molaei A., Oustan, S. 2011. Pollution induced community tolerance (PICT) of microorganisms in soil incubated with different levels of Pb. World Academy of Science, Engineering and Technology 5: 12-20.
  6. Allison, L.E. and Moodie, C.D. 1965. Carbonates. p. 1379-1396. In: Black, C.A. (ed.) Method of Soil Analaysis. Part 3. ASA and SSSA, Madison, WI.
  7. Amiard-Triquet C., Rainbow P.S. and Romeo, M. 2011.Tolerance to Environmental Contaminants.CRC press.
  8. Bragadin, M., Perin G., Raccanelli S. and Manente, S. 1996. The accumulation in lysosomes of the anionic detergent linear alkylbenzene sulfonate. Environmental Toxicology and Chemistry 15:1749-1751.
  9. Chapman, H. D. 1965. Cation exchange capacity. p. 891-901.  In: Black C.A. (ed.) Methods of soil analysis. Part 2. ASA and SSSA, Madison, WI.
  10. del Mar Sánchez-Peinado, M., González-López J., Rodelas B., Galera V., Pozo C. and Martínez-Toledo, M.V. 2008. Effect of linear alkylbenzene sulfonates on the growth of aerobic heterotrophic cultivable bacteria isolated from an agricultural soil. Ecotoxicology 17:549-557.
  11. Ebina, J., Tsutsui T. and Shirai, T. 1983. Simultaneous determination of total nitrogen and total phosphorus in water using peroxodisulfate oxidation. Water Research 17:1721-1726.
  12. Elsgaard, L., Petersen S.O. and Debosz, K. 2001a. Effects and risk assessment of linear alkylbenzene sulfonates in agricultural soil. 1. Short‐term effects on soil microbiology. Environmental Toxicology and Chemistry 20:1656-1663.
  13. Elsgaard, L., Petersen S.O., Debosz, K. 2001b. Effects and risk assessment of linear alkylbenzene sulfonates in agricultural soil. 2. Effects on soil microbiology as influenced by sewage sludge and incubation time. Environmental Toxicology and Chemistry 20:1664–1672.
  14. Friedel, J. K. , Langer T., Rommel J., Siebe C.,  Kaupenjohann, M. 1999. Increase in denitrification capacity of soils due to addition of alkylbenzene sulfonates. Biology and Fertility of Soils 28:397–402.
  15. Gee, G. W. and Bauder, J. W. 1986. Particle-size analysis. p. 383–412. In: Klute A.(ed.). Methods of Soil Analysis. Part 1. ASA and SSSA, Madison, WI.
  16. Goodnow, R.A. and Harrison, A.P. 1972. Bacterial degradation of detergent compounds. Applied Microbiology 24:555-560.
  17. Housaindokht, M.R., Moosavi-Movahedi A.A., Moghadasi J. and Jones, M.N. 1993. Interaction of glucose oxidase with ionic surfactants: a microcalorimetric study. International Journal of Biological Macromolecules 15:337-341.
  18. Jensen, J. 1999. Fate and effects of linear alkylbenzene sulphonates (LAS) in the terrestrial environment. Science of the Total Environment 226:93-111.
  19. Jensen, J., Smith S.R., Krogh P.H., Versteeg D.J. and Temara, A. 2007. European risk assessment of LAS in agricultural soil revisited: species sensitivity distribution and risk estimates. Chemosphere 69:880-892.
  20. Kirkham, M.B. 2014. Principles of Soil and Plant Water Relations. Academic Press.
  21. Lierop, W.V. 1990. Soil pH and lime requirement determination. p.73-126 In: Westerman R.L. (ed.). Soil Testing and Plant Analysis. SSSA, Madison, WI.
  22. Litz, N. Doering H.W., Thiele M. and Blume, HP. 1987. The behavior of linear alkylbenzenesulfonate in different soils: A comparison between field and laboratory studies. Ecotoxicology and Environmental Safety 14: 103–116.
  23. Malkomes, H.P., Wohler B. 1983. Testing and evaluating some methods to investigate side effects of environmental chemicals on soil microorganisms. Ecotoxicology and Environmental Safety 7:284–294.
  24. Mao, X., Jiang R., Xiao W. and Yu, J. 2015. Use of surfactants for the remediation of contaminated soils: a review. Journal of Hazardous Materials 285:419-435.
  25. Mungray, A.K. and Kumar, P. 2008. Anionic surfactants in treated sewage and sludges: risk assessment to aquatic and terrestrial environments. Bioresource Technology 99:2919-2929.
  26. Mungray, A.K. and Kumar, P. 2009. Fate of linear alkylbenzene sulfonates in the environment: a review. International Biodeterioration and Biodegradation 63:981-987.
  27. Nelson, D.W. and Sommers, L.E. 1982. Total carbon, and organic matter. p. 539-580. In: Page A.L. (ed.). Methods of Soil Analysis. Part 2,ASA and SSSA, Madison, WI.
  28. Nosrati, R., Owlia P., Saderi H., Rasooli I., Ali Malboobi, M. 2014. Phosphate solubilization characteristics of efficient nitrogen fixing soil Azotobacter strains.Iranian Journal of Microbiology. 6:285-95.
  29. Olusola, A.O. and Benjamin, A.O.2009. Biodegradation of synthetic detergents in wastewater. African Journal of Biotechnology 8:1090-1109.
  30. Pozo, C., Rodelas B., Calvo C., Martínez-Toledo M.V. and González-López, J. 2003. Linear alkylbenzene sulfonates (LAS) on soil microbial activity. Journal of Food, Agriculture and Environment 1:348-350.
  31. Rhoades, J. D. 1996. Salinity: Electrical conductivity and total dissolved salts. p. 417-436. In: Sparks D. L.  (ed.). Methods of soil analysis. Part 3. SSSA and ASA, Madison, WI.
  32. Seema, B.S., Riyaz, Z.S., Mrugesh, H.T. and Thivakaran, A.G. 2013. Phosphate solubilizing microbes: sustainable approach for managing phosphorus deficiency in agricultural soils. SpringerPlus 2:587- 601.
  33. Shukor, M.Y., Husin, W.S.W., Rahman, M.F.A., Shamaan, N.A., and Syed, M.A. 2009. Isolation and characterization of an SDS-degrading Klebsiella oxytoca. Journal of Environmental Biology 30: 129-134.
  34. Sterzel, W. 1997. Toxicology of surfactants used in cosmetics. p. 557-571. In: Reiger M.M. and Rhein L.D. (eds.). Surfactants in cosmetics, 2nd ed. Marcel Dekker: New York.
  35. Swisher, R.D. 1986. Surfactant Biodegradation, CRC Press.
  36. Venhuis, S.H. and Mehrvar, M. 2004. Health effects, environmental impacts, and photochemical degradation of selected surfactants in water. International Journal of Photoenergy 6:115-125.
  37. Vinther, F.P., Mortensen G.K. and Elsgaard, L. 2003. Effects of linear alkylbenzene sulfonates on functional diversity of microbial communities in soil. Environmental Toxicology and Chemistry 22:35-39.
  38. Wadaan, M. and Mubarak, M. 2009. Blood chemistry changes as an evidence of the toxic effects of anionic surfactant sodium dodecyl sulfate. Asian Journal of Scientific Research 2: 113-118.
  39. Wilke, B.M. 1997. Effects of non-pesticides organic pollutans on soil microbial activity. Advances in GeoEcology 30: 117-132.