اثر باکتری، اگزوپلی‌ساکارید باکتریایی و نانو ذرات سیلیکون بر جوانه زنی بذر گوجه فرنگی تحت تنش شوری

نوع مقاله: مقاله پژوهشی

نویسندگان

1 دکتری گروه علوم خاک دانشگاه آزاد اسلامی اصفهان واحد خوراسگان

2 دانشیار میکروب شناسی گروه علوم پایه پزشکی دانشگاه آزاد اسالمی اصفهان واحد خوراسگان

3 استاد گروه علوم خاک دانشگاه آزاد اسالمی اصفهان واحد خوراسگان

4 استادیار گروه علوم خاک دانشگاه آزاد اسالمی اصفهان واحد خوراسگان

5 دانشیار گروه علوم خاک دانشگاه آزاد اسالمی اصفهان واحد خوراسگان

چکیده

شوری یکی از تنش­های اصلی و شایع در جهان کنونی است که سبب کاهش تولیدات کشاورزی و نقصان رستنیهای طبیعی در نواحی وسیعی از سطح زمین می‌شود. درکشاورزی همواره سعی بر این بوده است که تحمل گیاهان زراعی نسبت به تنش‌های محیطی افزایش یابد. بنابراین این پژوهش با هدف ارزیابی تأثیر باکتری، اگزوپلی‌ساکارید باکتریایی و نانو ذرات سیلیکون در کاهش اثرات منفی تنش شوری بر بذر گوجه­فرنگی (سولانوم لیکوپرسیکوم) طراحی و در قالب طرح فاکتوریل کاملاً تصادفی با سه تکرار، در بهمن ماه ۱۳۹۵ در گلخانه تحقیقاتی دانشگاه آزاد اسلامی اصفهان (خوراسگان) اجرا شد. تیمارها شامل محلول اگزوپلی‌ساکارید ۰۱/۰ مولار)، مایه تلقیح جدایه باکتری با جمعیت ۱۰۸ ×۱ سلول در میلی‌لیتر (۱ میلی لیتر)، نانو ذرات سیلیکون (۸ گرم در لیتر) بودند. بذور گوجه­فرنگی رقم (PS) پس از ضد عفونی با تیمارهای مورد نظر تلقیح و در گلدان­های خاک کاشته شدند و در طول مدت رشد، آبیاری با محلول کلرید سدیم با سطوح مختلف شوری (۳/۰، ۲، ۴، ۶، ۸ دسی زیمنس بر متر) انجام گرفت. پس از  ۱۵ روز تأثیر تیمارها بر درصد جوانه زنی، سرعت جوانه زنی، میانگین زمان جوان زنی و شاخص ویگور (بنیه بذر) بررسی شد. بر اساس نتایج تجزیه واریانس، تاثیر تیمارها در سطوح مختلف شوری بر درصد جوانه زنی، سرعت جوانه زنی، شاخص بنیه بذر و میانگین زمان جوانه زنی معنی دار شد (در سطوح احتمال ۵ و ۱ درصد). بطوریکه با افزایش میزان شوری درصد جوانه زنی، سرعت جوانه زنی و شاخص ویگور (بنیه بذر) کاهش و میانگین زمان جوانه زنی افزایش معنی داری یافت در حالی که کاربرد نانو ذرات سیلیکون، باکتری مقاوم به شوری و اگزوپلی‌ساکارید باکتریایی اثرات منفی شوری بر فاکتورهای جوانه زنی را کاهش داد بطوریکه کاربرد این تیمارها درصد جوانه زنی، سرعت جوانه زنی و شاخص بنیه بذر را تحت تنش شوری بطور معنی دار افزایش و میانگین زمان جوانه زنی را بطور معنی­داری کاهش داد .

کلیدواژه‌ها


عنوان مقاله [English]

Eeffect of bacterial inoculation, bacterial exopolysaccharide and nano SiO2 particles on seed germination of Solanum lycopersicum under salinity stress

نویسندگان [English]

  • F. Moshabaki Isfahani 1
  • A. Tahmoorespour 2
  • M, Hoodaji 3
  • M. Ataabadi 4
  • A. Mohamadi 5
1 PhD, Department of Soil Science, Islamic Azad University of Isfahan, Khorasgan Branch
2 Associate Professor of Microbiology, Department of Basic Medical Sciences, Isfahan Islamic Azad University Khorasgan Branch
3 Professor, Department of Soil Science, Isfahan Islamic Azad University Khorasgan Branch
4 Assistant Professor, Department of Soil Science, Isfahan Islamic Azad University Khorasgan Branch
5 Associate Professor, Department of Soil Science, Isfahan Islamic Azad University Khorasgan Branch
چکیده [English]

Salinity is a major abiotic stress which is limiting growth and productivity of plants. Salinity affect plant growth differently in all growth stages. Looking at different mechanisms for increasing plant tolerance has been noticed to overcome the problem of salinity. Present study was designed to evaluate the effects of bacterial inoculation, bacterial exopolysaccharides and nano silicon particles on reducing salinity stress in seed germination of Solanum lycopersicum. This study was carried out in the greenhouse condition in Islamic Azad University of Isfahan. It was done through a completely randomized design with three replications, in February 2016. Treatments were: Exopolysaccharide solution (0.01 M), 1 ml of bacterial suspension (1×108 CFU.ml-1), nano silicon particles (8 g.L-1). Tomato seeds (cultivar PS) were sterilized and inoculated with treatments then planted in pots. Irrigation was carried out during the experiment, with the saline water (0.3, 2, 4, 6, 8 dS.m-1). After 15 days the effect of treatments on germination percentage, germination rate and mean germination time and vigor index were assessed. Based on the results, the effect of treatments at different salinity levels, on the germination percentage, germination rate, vigor index and mean germination time, (0.01 and 0.05 probability levels) was statistically significant. So that germination percentage, germination rate, vigor index were decreased with increasing salinity and mean germination time was increased significantly, while the use of nanoparticles silicon, inoculation of salt tolerant bacteria and bacterial exopolysaccharides reduced the negative effects of salinity on seed germination factors. Seed germination, germination rate, vigor index increased in all treatments and mean germination time reduced significantly under salinity stress.

کلیدواژه‌ها [English]

  • Solanum lycopersicum
  • Salinity
  • Mean Germination Time
  1. تمرتاش؛ ر، شکریان، ف. و کارگر، م. ۱۳۸۹. بررسی تأثیر تنش شوری و خششکی بر ویژگی‌های جوانه زنی بذر شبدر برسیم. مجله علمی پژوهشی مرتع. ج ۴، ش ۲، ص ۲۹۷-۲۸۸.
  2. خدابخش؛ م، تاج آبادی ابراهیمی، م. و هاشمی، م. ۱۳۹۱. تولید اگزو‌پلی‌ساکارید از لاکتوباسیل­های جدا شده از کشک منطقه لیقوان. فصلنامه بیوتکنولوژی و میکروبیولوژی. ش ۱، ص ۱۰۰-۸۳.
  3. زنجیر بند، م. ۱۳۸۵. جداسازی و شناسایی بعضی از باکتری‌های نمک دوست و بررسی اثر برخی عوامل مؤثر بر رشد آنها. پایان نامه کارشناسی ارشد میکروبیولوژی، دانشگاه اصفهان.
  4. طالبی اتویی؛ م، پوربابایی، ع. و شرفا، م. ۱۳۹۲. تأثیر باکتری­های شورزی مولد پلی‌ساکارید بر رشد گندم در تنش‌های خشکی و شوری. مجله پژوهش‌های خاک (علوم خاک و آب). ج ۲۷، ش ۱،  ص ۱۰۶-۹۷.
  5. محمودی قادی؛ پ، تاج علیپور، ز. و کاشی، ع. ۱۳۹۰. تأثیر باکتری تیوباسیلوس بر رشد و عملکرد گوجه­فرنگی تحت شرایط شوری. مجله نمک. ج ۱، ش ۳،  ص ۷۰-۶۳.
  6. ناهیدان، ص. و ف. نوربخش. ۱۳۸۸. تأثیر تاریخچه مدیریت کربن آلی بر برخی از خصوصیات بیولوژیکی خاک. مجموعه مقالات یازدهمین کنگره علوم خاک ایران. گرگان. ۲۱-۲۳ تیر. صفحه ۸۵-۸۶.
  7. Al-Harbi, A.R., Wahb-Allah, M.A. and Abu-Moriefah, S.S. 2008. Salinity and nitrogen level affects germination, emergence and seedling growth of tomato. International Journal of Vegetable Science. 14(4): 380-392.
  8. Arora, M., Kaushik, A., Rani, N. and Kaushik C.P. 2010. Effect of cyanobacterial exopolysaccharides on salt stress alleviation and seed germination. Journal of Environmental Biology. 31(5): 701-704.
  9. Ashraf, M. and Foolad, M.R. 2005. Pre-sowing seed treatment a shotgun approach to improve germination, plant growth and crop yield under saline and non saline conditions. Advances in Agronomy. 88: 223-271.
  10. Azimi, R., Borzelabad, M.J., Feizi, H. and Azimi, A. 2014. Interaction of Sio2 nanoparticles with seed prechiling on germination and early seedling growth of tall wheatgrass (Agropyron elongatum L.). Polish Journal of Chemical Technology. 16 (3): 25-29.
  11. Cappuccino, J. and Sherman, N. 1996. Microbiology (a laboratory manual). 1st Edn, New York: Benjamin, Cumming Publishing Company INC, 477 p.
  12. Chadho, K. and Rajender, G. 1995. Advance in Horticulture Medicinal and Aromatic Plants. 11th edn, New Delhi: Malhotra Publishing House, 935 p.
  13. Dimkpa, C., Weinand, T. and Arch, F. 2009. Plant-rhizobacteria interactions alleviate abiotic stress conditions. Plant, Cell & Environment. 32(12): 1682-1694.
  14. Etminan, M., Takkouche, B. and Caamano-Isorna, F. 2004. The role of tomato products and lycopene in the prevention of prostate cancer: a meta-analysis of observational studies. Cancer Epidemiol Biomarkers and Prevention. 13 (3):340-345.
  15. Kaya, M. and Ipek, D.A. 2003. Effects of different soil salinity levels on germination and seedling growth of safflower (Carthamus tinctorius L.). Turkish Journal of Agriculture and Forestry. 27: 221-227.
  16. Khan, M.A. and Gulzar, S. 2003. Germination responses of Sporobolus ioclados: A saline desert grass. Journal of Arid Environments. 55: 453–464.
  17. Lee, S.H., Lee, W.S., Lee, C.H. and Jeong-Gyu, K. 2008. Degradation of phenanthrene and pyrene in rhizosphere of grasses and legumes. Journal of Hazardous Materials. 153: 892-898.
  18. Lu, J., Li, Y., Yan, X., Shi, B., Wang, D. and Tang, H. 2009. Sorption of atrazine onto humic acids (HAs) coated nanoparticles. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 347(1-3):90–96.
  19. Madueno, L., Coppootelli, B.M., Alvarez, H.M. and Morelli, I.S. 2011. Isolation and characterization of indigenous soil bacteria for bioaugmentation of PAH contaminated soil of semiarid Patagonia, Argentina. International Biodeterioration and Biodegradation. 65: 345-351.
  20. Matthews, S. and Khajeh-Hosseini, M. 2007. Length of the lag period of germination and metabolic repair explain vigour differences in seed lots of maize (Zea mays). Seed Science and Technology. 35: 200-212.
  21. McCready R.M., Guggolz, J., Silviera, V. and Owens, H.S. 1950. Determination of starch and amylase in vegetables. Analytical chemistry. 22: 1156-1158.
  22. Mishra, A., Kavita, K. and Jha, B. 2011. Characterization of extracellular polymeric substances produced by micro-algae Dunaliella salina. Carbohydrate Polymers. 83:852–857.
  23. Munns, R. 2002. Comparative physiology of salt and water stress. Plant Cell and Environment. 25: 239-250.
  24. Naseri, R., Emami, T., Mirzaei, A. and Soleymanifard, A. 2012. Effect of salinity (sodium chloride) on germination and seedling growth of barley (Hordeum Vulgare L.) cultivars. International Journal of Agriculture and Crop Sciences. 4: 911-917.
  25. Qurashi, A.W. and Sabri, A.N. 2012. Bacterial exopolysaccharide and biofilm formation stimulate chickpea growth and soil aggregation under salt stress, Brazilian Journal of Microbiology. 43(3): 1183–1191.
  26. Rauf, M., Afzal, M. and Munir, M. 2007. Performance of wheat genotypes under osmotic stress at germination and early seedling growth stage. African Journal of Biotechnology. 6: 971-975.
  27. Richert, L., Golubic, S., Le Guedes, R., Ratiskol, J., Payri, C. and Guezennec, J. 2005. Characterization of exopolysaccharides produced by cyanobacteria isolated from Polynesian microbial mats. Current Microbiology. 51: 379-384.
  28. Shahid, M., Pervez, M.A. and Ashraf, M.Y. 2011. Characterization of salt tolerant and salt sensitive pea (Pisum sativum L.) genotypes under saline regime. Pakistan Journal of Life and Social Science. 9: 201-208.
  29. Siddiqui H.M. and Al-Whaibi, M.H. 2014. Role of nano-Sio2 in germination of tmato (Lipopersicum esculentum seeds Mill.). Saudi Journal of Biological Sciences. 21:13- 17.
  30. Upadhyay, S.K., Singh, J.S. and Singh, D.P. 2011. Exopolysaccharide producing plant growth promoting Rhizobacteria under salinity condition. Soil Science Society of China. 21 (2):214-222.
  31. Vashisth, A. and Nagarajan, S. 2010. Effect on germination and early growth characteristics in sunflower (Helianthus annuus) seeds exposed to static magnetic field. Journal of Plant Physiology. 167 (2): 149–156.